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Summary 
We summarise in this report the Indian Ocean Climate Initiative’s (IOCI) work to date to 
develop a statistical procedure for modelling nonlinear climate phenomena. This 
procedure is motivated by the physical idea of a switching mechanism that causes 
different climate states to prevail for some period of time. There is a range of evidence to 
support these ideas, much of which was discussed in the Phase I report, and will be 
further discussed here. A simple example is the well-known phenomenon in the tropics 
where enhanced convection can occur when sea surface temperatures are greater than 
about 29°C, so different rainfall regimes apply either side of this threshold temperature. 

A key feature of the procedure that we have developed is that it is not based on the 
typically strong statistical assumptions needed to perform a text book analysis. The 
statistical assumptions required are instead implied by the physical paradigm. We call 
this procedure a Bayesian threshold model, for reasons that will become clear below. 

At the conclusion of this phase of IOCI we have developed and tested the Bayesian 
threshold model using monthly rainfall data at Rottnest Island and Manjimup. This 
represents the diversity of Southwest WA to some extent; Rottnest Island has been 
included in particular because there seems to be little scope for land-use change to have 
impacted rainfall patterns at this location. This has required some statistical research to 
underpin the Bayesian threshold model, and the detailed development is contained in a 
manuscript that has been submitted for publication. The manuscript is attached in 
Appendix C to this report. The method is relatively easy to use and can identify important 
predictors and the key lags at which they act to influence a climate variable, such as 
rainfall. It is possible to examine the impact of different switching variables and identify 
the likely number of thresholds in the switching variable, although this is the subject of 
ongoing work as it is currently somewhat ad hoc. 

Whilst the main purpose of the case studies to date has been to support the development 
of the Bayesian threshold model, some interesting physical links have been observed. We 
cite them as evidence at this stage that the model is behaving as we would expect, rather 
than providing great insights. Searching for leading rainfall indicators is necessarily 
collaborative in nature, not simply a statistical modelling exercise, but can now 
incorporate a new nonlinear statistical tool. 

Clear indications of switching behaviour have been found in the rainfall time series. For 
Rottnest Island no connection with monthly rainfall and the El Niño-Southern Oscillation 
(ENSO), as measured by the Southern Oscillation Index (SOI), has been found. A 
seemingly strong link has been found at Manjimup however. We have also examined the 
use of sea surface temperature gradient in the mid-Indian Ocean as a switching variable. 
There is evidence that it plays a role in switching rainfall regime at both sites considered, 
but the relationship appears to be especially strong at Rottnest Island, providing a leading 
indicator of winter rainfall. 

If we conceive of a ‘true’ switching mechanism, it seems unlikely that this will be a very 
simple process. Physical intuition suggests that a combination of patterns in the Indian, 
Southern and Pacific Oceans is more likely to cause a switch in rainfall regime. This is 
because the climate system is driven by interaction between oceans as well as the oceans 
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and the atmosphere. Preliminary work suggests that the Bayesian switching model can 
readily be adapted to a more general framework that will facilitate the search for such 
climate interactions. We intend to pursue this as time permits. 

Our key priority for the last phase of IOCI is to apply the Bayesian switching model, and 
our statistical expertise more generally, to a range of case studies developed in 
collaboration with the contributing partners. 

 

Key Points: 

• We have developed a physically motivated statistical model (‘Bayesian switching 
model’) for modelling nonlinear climate processes. 

• Changes between climate regimes are triggered by a switching variable, and 
alternative switching variables can be compared. 

• The Bayesian switching model can identify good predictors and the lags at which 
they influence climate variables, such as rainfall. 

• We have reached the point where a nonlinear time series approach can be applied to 
practical problems. 

• There is some evidence that SOI and mid-Indian Ocean SST gradients play a role in 
switching between rainfall regimes. This is cited at this stage as evidence that the new 
nonlinear approach is producing sensible results, rather than new insights per se. 

• Interactions between climate processes are likely to influence rainfall in Southwest 
WA. Some reasonably straightforward extensions to the Bayesian switching model 
will facilitate the search for subtler climate teleconnections arising from such 
interactions. 

• The focus of future work will be the development of case studies with IOCI’s 
contributing partners. 

 

Suggested Reading 
The work summarised in this report represents an overview of an statistical research 
effort. For most readers there is more technical detail than is necessary to understand the 
methods used and the progress made. The technical details are important for 
completeness however. We suggest two paths through this report: 

 

For readers interested in the statistical research issues: Read in the order presented, but 
a first reading of Appendix C is appropriate after §2. 

 

For readers not interested in the statistical research issues: §2.5 contains an overview of 
the technical material and so is optional but is of general interest; §3 is optional as it 
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contain some substantial technical material; §4.2 and Appendix C should be skipped 
completely. 

1 Introduction 
Many advances in climate forecasting have been brought about by the statistical analysis 
of available data. These advances occur when the analysis of climate data poses questions 
that encourage us to new physical understanding; when we can achieve this then there is 
a solid foundation on which to build better climate forecasting systems. Given the 
complex, inter-related nature of the climate system this can be a very difficult process in 
practice. 

The bulk of statistical climatology work reported in the literature (see: Campbell et al., 
IOCI Phase I Report) uses conventional statistical methods to explore for physical 
relationships. Such techniques often make strong assumptions about the nature of the 
physical systems being studied. For example, it is typically assumed that linear 
relationships exist between variables of interest and that the physical processes do not 
change their behaviour with time. The gap between what the statistical methods can 
deliver and the true nature of the physical systems being studied must be bridged by a 
good deal of intuition. This is unfortunate because it is very likely that many important 
physical questions are never posed because the statistical “searchlight” is inadequate. 

IOCI is quite unique in that a statistical research capability is woven into the initiative. 
The objective of our work is to examine the nature of climate processes and to develop 
statistical methods appropriate for the analysis of data arising from such processes. Based 
on our work in Phase I it became clear that there is a need to develop methods that can 
model nonlinear climate phenomena.  

We have undertaken to develop a statistical methodology that will also provide 
uncertainty measures for forecasts. That is, rather than just giving a rainfall estimate we 
will provide a probability distribution for a rainfall forecast. We have been using monthly 
rainfall to develop our methods because it is such a difficult quantity to model, but do not 
limit our scope to rainfall.  It is our intention to identify relevant applications of the 
methods developed in partnership with IOCI’s contributing partners. 

In this report we document the work to date in the statistical method development. In 
section 2 we describe the physical rationale for the methods being developed; section 3 
describes case studies of monthly rainfall at Rottnest Island and Manjimup that have been 
used to test the methods as they’re developed. A discussion of our results to date is given 
in section 4 with some conclusions in section 5. 

2 Year 3 Development Path 

2.1. Probability Distributions for Forecasts 
There are two key features of a climate forecast that a decision-maker in climate-
impacted sector must balance in reaching their decision. First, the climate pattern 
forecasted and, second, the uncertainty associated with the forecast. Different decisions 
are required for different levels of uncertainty. For example, if a forecast is known to be 
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highly accurate and very clearly forecasts boom conditions for wheat farmers say, then a 
sensible decision might be to expand wheat production. In a situation of greater 
uncertainty, with the same forecast climate pattern, to manage risk in a sensible fashion it 
is advisable to maintain a more balanced crop portfolio. 

To provide a complete statement of uncertainty we need to integrate (assimilate) 
information from a variety of sources. These encompass uncertainties in available climate 
data, the forecast system used and the availability of expert knowledge. Such expert 
knowledge would typically include both a meteorological and a decision-maker’s 
perspective. A final integrated statement of uncertainty would be a probability 
distribution for a climate output- such as next year’s wheat production, to continue the 
above example. 

The Bayesian statistical framework is ideal for integrating uncertainty information, so we 
have chosen to develop our methods within the Bayesian framework. The Bayesian 
approach begins with a statement of knowledge prior to the collection of data (“prior 
knowledge”). This information is expressed as a probability distribution, allowing us to 
specify quantities such as “most likely value,” “average value” etc. Our uncertainty can 
then be expressed via the spread of prior knowledge. The prior knowledge is then 
combined with the data via a mathematical rule known as Bayes’ Theorem to form an 
integrated expression of uncertainty posterior to data collection (“posterior knowledge”). 
This is illustrated heuristically in Figure 1. We see that the data have greatly reduced 
uncertainty, as the posterior is much more concentrated on a particular value than the 
prior. 

In addition to providing a powerful scientific framework for drawing inferences from 
data there are also a number of technical advantages. In particular, in climate prediction 
we are most concerned with finding good predictors and the time lags at which these 
predictors influence climate. In comparison with more conventional statistical methods 
the Bayesian framework offers much more flexibility in identifying good predictors with 
fewer technical mathematical concerns. 

 

157 



Campbell, Bates & Charles 

158 

Prior Knowledge

Posterior Knowledge

 

Figure 1 The Bayesian process of integrating data and expert 
opinion. 

 

2.2. Climate Switching Models 
Much of the statistical analysis undertaken in climate research uses so-called linear 
statistical techniques to identify climate processes. There is however significant evidence 
that the climate system can behave in strikingly nonlinear ways. For example, Graham 
and Barnett [1987] show that in the tropics enhanced convection occurs at Sea-Surface 
Temperatures (SSTs) greater than about 29ºC. This implies that different rainfall 
forecasting systems apply depending on whether SST is above or below the threshold 
temperature of 29ºC. In general there may well be a delay between the threshold SST 
being reached and the resulting switch in rainfall regime.  In each rainfall regime we 
assume that different linear climate processes apply. This is depicted in Figure 2 with a 
linear approximation superimposed for reference. 
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A similar result was found by Hsieh et al. [1999] in the context of predicting Canadian 
prairie wheat yield from Pacific Ocean SSTs. If a linear system applies then SST 
anomalies in low and high yield years should be of similar magnitude, but with opposite 
signs. Instead they found major asymmetries in SST anomalies and that only low yields 
are predictable from SST anomalies. If this information is ignored then a potentially 
misleading forecast system will result; at best it will have little skill. 

Palmer [1999] examined climate prediction from a nonlinear perspective, providing 
theoretical justification for a climate system that resides in equilibrium states for periods 
of time, subject to occasional rapid switching between states. Palmer found some 
evidence in available data to support this view. The threshold SST idea described above 
is consistent with this view, with SST providing the switch between states. 

There is therefore a strong argument for developing statistical models incorporating the 
concept of threshold behaviour. Such models will allow a more physically motivated 
analysis of available data than has hitherto been the case. The key research activity of the 
CSIRO Mathematical & Information Sciences (CMIS) group has been to develop a 
statistical method for identifying good predictors in a Bayesian nonlinear framework. The 
results of the work to date are described in section 3 where the monthly rainfall case 
studies are described. The theoretical work underpinning the case studies is described in 
the manuscript appended to this report. 

2.3. Incorporating Ocean-Atmosphere Interactions 
Rainfall arises from an interaction between the oceans and the atmosphere. This means 
that information on the atmosphere or oceans alone my not be sufficient to forecast 
climate; it may be necessary to have knowledge of both. In particular there may be 
combinations of conditions in the oceans and atmosphere that provide a leading indicator 
of enhanced rainfall or drought. It may also be the case that combinations of past ocean 
conditions are more important than individual SST values. 

SST

llRainfa

Linear
Approximation

 

Figure 2 Nonlinear relationship between Rainfall and SST. 
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The interaction concept is a very powerful one. An example of a statistically significant 
interaction effect is shown in Figure 3. In this case we require SST to be high both 3 and 
6 months prior to winter to experience high winter rainfall. Whilst SST 6 months ago is a 
leading indicator of rainfall it must be sustained until 3 months before winter to produce 
high winter rainfall. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Example of an interaction effect in SST influencing rainfall. 
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Interaction effects of this type can be very difficult to detect in climate data. An approach 
to doing this is to include a product term “SST (-6 months) × SST (-3 months)” in the 
models we fit to the data. An approach to this problem is currently under development for 
application in the final stage of IOCI. 

In the context of IOCI’s work, Indian, Pacific and Southern ocean conditions as well as 
atmospheric conditions are of great relevance. Australia’s island continent status is 
uniquely complex in this regard, so interactions between 3 oceans and the atmosphere are 
clearly relevant to climate prediction. 

2.4. Modelling Approach 
It is common practice to model deviations (“anomalies”) from long term climate trends in 
preference to modelling the raw data. The main purpose for this is so that predictors 
beyond simple climatological averages can be sought. From a nonlinear perspective the 
calculation of anomalies carries the risk that important information might be lost. For 
example, it could well be that different climate regimes have different seasonal patterns. 
It is also the case that the method used to remove long term trends can introduce features 
of its own. 

We have chosen not to model anomalies. Instead we seek to capture the seasonal pattern 
of, e.g. rainfall, by incorporating rainfall as the leading term in the model. Subsequent 
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terms in the model, such as SST, will therefore only be included if they explain rainfall 
variation additional to the rainfall history itself. The modelling approach may be 
summarised as: 

 

( ) ( ) (Rain today Rain history SST additional to rain history= + ) . 

This applies to each regime identified, so different terms can be selected in each regime. 

2.5. Development of Methodology 
Within a nonlinear, climate-switching framework we have identified a need to provide 
probability distributions for forecasts and to identify the time lags at which important 
predictors influence climate. These requirements present a challenging statistical 
problem. An approach developed by CSIRO Mathematical and Information Sciences is 
described in detail in the manuscript in Appendix C. This manuscript is still in peer 
review at the time of writing. 

For the interested reader, the approach uses an extended Markov chain Monte Carlo 
(MCMC) approach known as Reversible Jump MCMC (RJMCMC). In MCMC we set-up 
a carefully defined random walk over the parameter space of a particular model in order 
to summarise the posterior distribution of the model’s parameters. RJMCMC extends the 
random walk to range over a collection of models. In this way we can conduct model 
selection and parameter estimation simultaneously. 

3 Case Studies 

3.1. Description of Data 
Monthly rainfall data (mm) for Rottnest Island and Manjimup were selected from Bureau 
of Meteorology’s high quality data set. Manjimup has been selected as representative of 
an inland site in the Southwest, whilst Rottnest Island has been selected since it is free of 
any concerns regarding land-use change. For Manjimup we used monthly rainfall data 
from 1950 to 1993 for model fitting. In the case of Rottnest Island, rainfall data were only 
available until 1992 at the time of this study. Data from 1950 were used so that credible 
use of sea surface temperature could be made. 

Some pre-processing of the rainfall data has been undertaken. First, rainfall data are 
typically highly skewed which can cause large rainfall events to have undue influence of 
the model-fitting procedure. In particular, linear time series models will tend to have an 
artificially high order in such circumstances. This could bias the comparison of linear 
with nonlinear models. To avoid this we have first transformed the rainfall data to be 
more nearly symmetric (using a Box-Cox transformation). As an aid to numerical 
stability all of the time series used were scaled to have mean 0 and standard deviation 1. 

One of the switching variables we have used is the SST gradient at Point 27, 3 (Bureau of 
Meteorology naming convention) in the mid-Indian Ocean. This measures the north-
south difference in SST at this point. This has been found by to have substantial 
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correlation with Manjimup rainfall [Lynda Chambers, pers. comm.]. The Bureau of 
Meteorology supplied the SST gradient data used in our case study, as were the SOI data. 

3.2. Manjimup Monthly Rainfall 

3.2.1 Predicting Rainfall From The Rainfall History Only 
As a first step we fit a threshold model to the monthly rainfall data alone, so we assume 
that a threshold exists in the rainfall time series rather than in SST. This is a reasonable 
starting point for investigating the performance of the threshold approach by seeking 
evidence of nonlinearity in the rainfall time series. 

To fit a threshold model we must determine the number of thresholds that are present. In 
Figure 4 we present a diagnostic1 for choosing the appropriate number of thresholds. On 
the vertical axis we plot a measure of the support2 in the data for a threshold parameter 
taking a value on the horizontal axis. We expect to see a cloud of points with a noisy 
spike at a value where there is support for a threshold. In this case there is a distinct spike 
at a value of about –1.1. This suggests that there is evidence for a low rainfall regime and 
a normal to high rainfall regime. In the analysis to follow we assume the presence of 1 
threshold. 

                                                 
1 In practice a number of these plots are produced at different scales. The final figure is focused on the 
region in which the threshold appears to be located. 
2 The likelihood of the time series plotted as a function of the threshold parameter. 
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Figure 4 Diagnostic plot for choosing the number of thresholds and their 
approximate locations. 

 

We can calculate some simple summaries of the resulting model fit. To get some insight 
into how well the procedure is performing we can use the resulting parameter estimates to 
calculate 1-month-ahead predictions for each observed monthly rainfall amount,3 and the 
result is shown in Figure 5. We see that the correlation between the predicted and 
observed values is 0.782. This is a reasonable performance given that we have only used 
the rainfall history. In general the approach under-predicts the largest observed events. 
This is not unexpected, and it is likely that a predictor such as sea surface temperature 
will be required to predict such events. 

                                                 
3 We must exclude a number of values at the beginning of the time series because the model uses past 
values of rainfall to forecast the future. This means that we cannot predict the first few values of the time 
series. 
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Figure 5 1-month-ahead predictions of monthly rainfall at Manjimup. The 
correlation between predicted and observed rainfall is 0.782. 

 

An important feature of the method we are developing is that it identifies the important 
time lags essentially automatically. The parameter estimates are shown in Table 1. At this 
stage the method retains all lags up to the longest, so we present the statistically 
significant terms only; the estimated model orders correspond to the model having the 
highest probability. The credibility intervals quoted for individual parameters incorporate 
model uncertainty4 by including competing models in the calculation, not just the model 
having highest probability. Notice first that the high and low rainfall regimes are quite 
different, having time lags of 6 and 16 months respectively. The high rainfall regime also 
has a relatively complicated structure. This is an important point: a linear fit may be able 
to produce a similar global fit, but is likely to perform poorly within a particular rainfall 
regime. The variance parameter is more clearly defined in regime 2 because there are 
more observations than in regime 1, which is quite typical of threshold models. 

 

                                                 
4 Since we don’t know the correct predictors to use we need to account for this important source of 
uncertainty. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -1.11 -1.21, -1.01 

Order 6 4, 7 

Intercept -0.261 -1.13, 0.639 

Lag-4 -0.332 -0.649, -0.0332 

Lag-6 -0.186 -0.510, 0.000 

 

Regime 1:
‘Low’ Rainfall

Variance 0.54228 0.38445, 0.74765 

Order 16 14, 17 

Intercept -0.0188 -0.0843, 0.051 

Lag-1 0.232 0.126, 0.348 

Lag-4 -0.139 -0.231, -0.0457 

Lag-5 -0.0924 -0.180, -0.00445 

Lag-7 -0.105 -0.198, -0.00515 

Lag-11 0.179 0.0797, 0.273 

Lag-13 0.242 0.143, 0.340 

Lag-14 -0.0902 -0.190, 0.000 

Lag-16 -0.0756 -0.192, 0.000 

 

 

 

 

 

Regime 2:
‘Normal/High’  

Rainfall  

Variance 0.38454 0.33614, 0.44096 

Table 1 Model-averaged parameter estimates with 95% credibility intervals. Only 
statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
 

For comparison with the threshold model we have also fitted a conventional linear time 
series model. The 1-month-ahead predictions are shown in Figure 6, with a correlation 
between predicted and observed values of 0.785 with an order 20 model. Notice that this 
does not include an intercept term, which we always include in the nonlinear model 
because such parameters can help to model highly volatile time series. Overall the 
number of parameters in this case is essentially the same, with the same global 
performance. Interestingly the order of the linear model is higher than for either of the 
rainfall regimes identified by the threshold model. This is in keeping with the concepts 
illustrated in Figure 2: in order to achieve the same overall quality of fit a higher order 
model is required. In reality there seems to be evidence for different rainfall regimes 
having different physical characteristics. 
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Figure 6 Results from fitting a conventional linear autoregressive model 
(order 20); the correlation between 1-month-ahead predictions and standardised 
monthly rainfall is 0.785. 

 

3.2.2 Predicting Rainfall Using The Southern Oscillation Index (SOI) As A 
Switch 

Nonlinear modelling of the rainfall time series in isolation has provided evidence for 
climate switching. However, it seems unlikely that rainfall itself is the cause of the 
switching behaviour. One possibility is the El Niño-Southern Oscillation (ENSO), as 
measured by the Southern Oscillation Index (SOI). However, it is likely that the impact 
of SOI on southwest WA rainfall will be delayed. We have used a delay of 1 month in the 
first instance to examine this issue. 

A stable threshold seemed to be present at around +1.5, so we examined the threshold 
diagnostic plot in this vicinity (Figure 7). There is clear support for a threshold at 
approximately +1.7, with a rapid drop in support below +1.6 and above +1.8. 
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Figure 7 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Manjimup rainfall using SOI as the switching 
variable. 

 

The 1-month ahead predictions obtained are shown in Figure 8; we see that there is a 
correlation of 0.788 between the observed and predicted values. The corresponding 
parameter values are shown in Table 2. The structure of the fitted model is remarkably 
similar to the rainfall-only model fitted above, particularly the ‘Normal/High’ rainfall 
regime. It is therefore very tempting to suggest that SOI plays a physical role in rainfall at 
Manjimup.  
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Figure 8 1-month-ahead predictions of monthly rainfall at Manjimup, 
using SOI as the switching variable. The correlation between predicted and 
observed rainfall is 0.788. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold 1.74 1.61, 1.82 

Order 16 14, 17 

Intercept -0.00965 -0.0639, 0.0454 

Lag-1 0.203 0.114, 0.295 

Lag-4 -0.163 -0.254, -0.0731 

Lag-7 -0.0918 -0.183, -0.00469 

Lag-11 0.150 0.0566, 0.240 

Lag-13 0.234 0.146, 0.326 

Lag-14 -0.0943 -0.181, -0.000874 

Lag-16 -0.114 -0.210, 0.000 

 

Regime 1:
‘Low’ SOI

Variance 0.39108 0.34085, 0.44835 

Order 5 1, 7 

Intercept 0.158 -0.360, 0.587 

Lag-4 0.505 0.000, 1.24 

Lag-5 -0.364 -1.00, 0.000 

 

Regime 2:
‘High’ SOI  

Variance 0.65143 0.25265, 1.5537 

Table 2 Model-averaged parameter estimates with 95% credibility intervals for 
Manjimup rainfall using SOI as the switching variable. Only statistically significant 
parameters are shown, correct to 3sf except for variance parameters which are shown 
correct to 5sf. 
 

In this case it seems that low rainfall in Manjimup is associated with large positive values 
of SOI, which is an indicator of El Niño events (Figure 9), although there is a clear 
exception to this rule.  The influence of ENSO on Northern and Eastern Australia is well 
known, but is a less recognised influence on the climate of Western Australia. On the 
evidence of this analysis it seems that quite extreme El Niño events can influence rainfall 
in Manjimup- the threshold for SOI being at +1.74 standard deviations to cause a low 
rainfall regime to be initiated. This does mean however that relatively few observations 
are available to characterise this regime. 
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Figure 9 Distribution of Manjimup rainfall for the two SOI regimes. 

 

The dates and rainfall amounts corresponding to the ‘High SOI’ regime are shown in 
Table 3, with runs of consecutive months highlighted. The exceptionally high rainfall 
event in the high SOI regime corresponds to August 1955. There is a run of high SOI 
values in April-May 1971 and August-October 1975. In general the events are scattered 
through the calendar year with all seasons represented; the months not present are March, 
June, July and November. It is interesting to note that the core winter rainfall months of 
June and July are not present, although there are of course relatively few observations in 
the ‘High SOI’ regime. 

In the analysis so far a delay of 1 month in the influence of the switching variable has 
been assumed. With a large scale effect such as ENSO it is worth looking for a longer 
delay. Analysis of a delay of 3 months gave very similar results to those presented above, 
although the SOI threshold was found to be somewhat lower at +1.57. The threshold 
framework is not ideally suited to searching for delayed threshold effects. However, the 
extension noted in section 2.3 for incorporating interactions is much more suited to such 
a search. This issue will be explored further. 

In experiments using SOI as a predictor in the model it was found that parameter 
estimates were less stable than when SOI was used only as a switching variable. Whilst 
there was some evidence that SOI helps to explain the historical data, it does not seem to 
provide any additional predictive capability, except as a switching variable. 
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Year 

 
Month 

Standardised 
Rainfall 

1955  
1970  
11997711  
11997711  
1973  
1974  
1974  
11997755  
11997755  
11997755  
1976  
1988  
1988  
1989 

August  
December   

AApprriill   
MMaayy  

December   
February   

April   
AAuugguusstt      

SSeepptteemmbbeerr    
OOccttoobbeerr   
January  
October  

December   
May 

2.61340  
-1.90830  
--00..5500119988      
00..8855550077  

-1.57610  
-0.57156   
0.34738 
0.3399666677      
00..5544774477    

--00..2288777755   
0.22630   
0.15450  

-1.26000   
0.38692 

Table 3 Dates and rainfall amounts corresponding to the 
‘High SOI’ regime. 

 

 

3.2.3 Predicting Rainfall Using SST Gradient As A Switch 
The threshold diagnostic plot is shown in Figure 10. There is a clear clustering around –
1.5, although there seems to be some uncertainty in the location of this threshold given 
the smear of points towards and beyond –2.0. This suggests that the threshold is not 
completely stable. Indeed there were signs of some instability during the course of the 
subsequent analysis, which requires further investigation. 

1-month ahead predictions are shown in Figure 11 below. The correlation between 
observed and predicted rainfall is 0.789, which is comparable to the other models fitted to 
Manjimup rainfall. Note that the low-SST gradient regime is of zero order; that is, rainfall 
in this regime is just a random scatter with no correlation through time. The predicted 
rainfall therefore does not vary in time and is the estimated intercept in regime 1 (-0.809). 
The full set of parameter estimates used to produce Figure 11 are shown in Table 4.  
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Figure 10 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Manjimup rainfall, using SST gradient as the 
threshold. 
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Figure 11 1-month-ahead predictions of monthly rainfall at Manjimup 
using SST gradient as the switching variable. The correlation between predicted 
and observed rainfall is 0.789. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -1.59 -2.02, -1.15 

Order 0 0, 1 

Intercept -0.809 -1.09, -0.286 Regime 1:
Low SST gradient Variance 0.57279 0.35474, 1.0464 

Order 16 13, 18 

Intercept 0.00941 -0.0522, 0.0708 

Lag-1 0.200 0.105, 0.295 

Lag-4 -0.153 -0.241, -0.0578 

Lag-5 -0.0998 -0.192, -0.00922 

Lag-7 -0.103 -0.190, -0.013 

Lag-13 0.226 0.135, 0.313 

Lag-16 -0.0916 -0.193, 0.000 

 

 

Regime 2:
High SST gradient  

Variance 0.38890 0.33503, 0.44810 

Table 4 Model-averaged parameter estimates with 95% credibility intervals. 
Only statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
 

The rainfall distributions in each of the SST gradient regimes are shown in Figure 12. 
The low SST gradient regime is clearly associated with low rainfall. Considering the 
parameter estimates in Table 4 once again, there are clear similarities with the previous 
fitted models in the structure of the normal to high rainfall regime in particular. This 
would suggest that there exists a reasonable basis for considering SST gradient as a 
switching mechanism. 
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Figure 12 Monthly rainfall distributions at Manjimup for each SST 
gradient regime. (Note: different plotting scales for each regime) 

 

The distribution of the two regimes is shown in Table 5. It is clear from this that the low 
SST gradient regime is a summer rainfall feature and does not provide an indicator of 
winter rainfall. A more detailed search of the high rainfall regime may detect a further 
threshold. 
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Number of Rainfall Months In Regime:  

Month SST Gradient ≤ -1.59 SST Gradient > -1.59 

January 2 40 

February 16 26 

March 18 24  

April 1 41  

May 0 43  

June 0 43  

July 0 43  

August 0 43  

September 0 43 

October 0 43 

November 0 43 

December 0 43 

 37 475 

 

Table 5 Number and distribution of months across SST 
gradient regimes for Manjimup monthly rainfall. 

 

 

3.3. Rottnest Island Monthly Rainfall 

3.3.1 Predicting Rainfall From The Rainfall History Only 
The threshold diagnostic plot is shown in Figure 13. Once again there appears to be 
evidence for a threshold in the vicinity of –1.1, although on this occasion there appears to 
be a discontinuity present. This suggests that there is evidence for complicated behaviour 
in this region. 
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Figure 13 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Rottnest Island rainfall. 

 

The 1-month ahead predictions are plotted against their observed values in Figure 14; the 
correlation of 0.821 is somewhat higher than for Manjimup. The vertically aligned points 
in the bottom left of the plot correspond to dry months in the observed record. The time 
series model at present does not explicitly account for dry periods. We see again that the 
largest observed events are consistently under-predicted. 
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Figure 14 1-month-ahead predictions of monthly rainfall at Rottnest Island. 
The correlation between predicted and observed rainfall is 0.821. 

 

The parameter estimates used to derive the predictions are shown in Table 6. The 1-
month-ahead predictions for the corresponding linear model are shown in Figure 15, 
which is an order 19 model. The threshold model suggests that there are two rainfall 
regimes distinguished by a threshold at about –1.1. There is a ‘Low’ regime of order 4, 
which is essentially a contrast between rainfall 2 and 4 months previously. The 
‘Normal/High’ regime has a much longer time dependency of 13 months, with more 
structure than for the ‘Low’ regime. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -1.09 -1.17, -1.02 

Order 4 4, 6 

Intercept -0.427 -1.19, 0.335 

Lag-2 0.321 0.0776, 0.571 

Lag-4 -0.433 -0.629, -0.208 

 

Regime 1:
‘Low’ Rainfall

Variance 0.55373 0.41108, 0.74165 

Order 13 13, 18 

Intercept -0.00376 -0.0648, 0.0568 

Lag-1 0.144 0.0465, 0.250 

Lag-7 -0.101 -0.188, -0.0140 

Lag-11 0.262 0.172, 0.355 

Lag-12 0.126 0.0175, 0.230 

Lag-13 0.277 0.189, 0.366 

 

 

Regime 2:
‘Normal/High’  

Rainfall  

Variance 0.28853 0.24976, 0.33405 

 

Table 6 Model-averaged parameter estimates with 95% credibility intervals. 
Only statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
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Figure 15 Results from fitting a conventional linear autoregressive model (order 19); 
the correlation between 1-month-ahead predictions and standardised monthly rainfall is 
0.825. 

3.3.2 Predicting Rainfall Using The Southern Oscillation Index (SOI) As A 
Switch 

No evidence was found that SOI provides any additional contribution to the rainfall 
history. When SOI was included as a predictor, using rainfall as the switching variable, 
the estimates obtained were unstable. When SOI was used as the switching variable, but 
not as a predictor, no stable threshold was found. 

This is quite a stark comparison with Manjimup where SOI did seem to influence 
monthly rainfall. The case for an SOI influence on Rottnest Island monthly rainfall seems 
to be weak on the basis of this analysis. 

3.3.3 Predicting Rainfall Using SST Gradient As A Switch 
We first investigate using SST gradient as the switching variable, but without including 
SST gradient as a predictor in the model. The threshold diagnostic plot is shown in Figure 
16, and there is clear evidence for a threshold at approximately –0.85. The 1-month ahead 
predictions for rainfall are shown in Figure 17, and we see that the correlation between 
predicted and observed rainfall is 0.829. The parameter estimates used to generate these 
predictions are shown in Table 1. There are some strong similarities in the structure of the 
SST gradient regimes here with the rainfall regimes found in section 3.3.1. They are not 
as closely matched as the SOI results for Manjimup however. 
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Figure 16 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Rottnest Island rainfall, using SST gradient as the 
threshold. 
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Figure 17 1-month-ahead predictions of monthly rainfall at Rottnest Island using 
SST gradient as the switching variable. The correlation between predicted and observed 
rainfall is 0.829. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -0.831 -0.851, -0.805 

Order 5 5, 5 

Intercept -0.510 -0.804, -0.248 

Lag-2 0.295 0.0878, 0.478 

Lag-4 -0.378 -0.664, -0.141 

Lag-5 -0.313 -0.572, -0.0569 

 

Regime 1:
Low SST gradient

Variance 0.51144 0.38359, 0.67864 

Order 13 13, 13 

Intercept 0.0555 -0.00467, 0.113 

Lag-1 0.215 0.119, 0.307 

Lag-4 -0.0874 -0.167, -0.00691 

Lag-7 -0.0950 -0.181, -0.0112 

Lag-11 0.265 0.172, 0.359 

Lag-13 0.242 0.150, 0.329 

 

 

Regime 2:
High SST gradient  

Variance 0.27942 0.23820, 0.32471 

 

Table 7 Model-averaged parameter estimates with 95% credibility intervals. 
Only statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
 

It is of some interest to compare the rainfall patterns defined by the two SST gradient 
regimes identified, and these are shown in Figure 18. We see that the low SST gradient 
regime is associated predominantly with below average rainfall. The rainfall months 
associated with the regimes are shown in Table 8, and it seems clear that the high SST 
gradient is associated with winter rainfall in particular. There is therefore some potential 
here to develop a predictive model for monthly rainfall. 
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Figure 18 Monthly rainfall distributions at Rottnest Island for each SST gradient 
regime. (Note: Different plotting scales for each regime) 
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Number of Rainfall Months In Regime:  

Month SST Gradient ≤ -0.83 SST Gradient > -0.83 

January 21  20 

February 37  5 

March 38  4 

April 14 28 

May 1 41 

June 1 41 

July 1 41 

August 1 41 

September 0 42 

October 0 42 

November 0 42 

December 0 42 

 114 389 

Table 8 Number and distribution of months across SST 
gradient regimes for Rottnest Island monthly rainfall. 

4 Discussion 

4.1. Physical Interpretations 
The case studies presented in this report were primarily used to develop and test the 
nonlinear statistical methodology. For the purposes of discussion we set this aside for the 
moment. We note that the new method has produced sensible results, which is the 
outcome we were seeking at this stage of its development. 

Some interesting differences have emerged between the two study sites of Rottnest Island 
and Manjimup. In the case of monthly rainfall at Rottnest Island we have found no 
significant link to the Southern Oscillation. There does however appear to be a link in the 
case of Manjimup. This is supported by a comparison of the results where SOI and 
rainfall are used as the switching variable. The regimes found using rainfall as the 
switching variable were almost identical to those found when using SOI as the switching 
variable. This suggests that SOI can be used to explain the switching behaviour of the 
monthly rainfall series at Manjimup. 

Whilst a rainfall teleconnection with the Southern Oscillation is not widely recognised, 
there is some existing evidence. For example, Crowder [1995] pp240-41 notes severe 
rainfall deficits in April 1982 through February 1983 in the far Southwest. This was a 
very severe El Niño event. This period was not detected in our Manjimup case study, but 
this may be because the high-SOI regime was not particularly well defined. 
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It was found that SOI did not work well as a predictor in the statistical modelling, only as 
a switching variable. Thus SOI can in principle be used to forecast switches in rainfall 
regime, but not as a simple predictor of future rainfall values. 

There is some evidence that SST gradient in the Indian Ocean influences rainfall at both 
Rottnest Island and Manjimup. This is physically reasonable since SST gradient is 
measuring a capacity for winds to be generated in the mid-Indian Ocean. It is not difficult 
to see how a change in circulation patterns beyond a critical value could cause a switch in 
rainfall regime.  

The nature of circulation patterns is that they act on very large scales. It may therefore be 
more realistic to develop a switching variable that is a combination of broad scale 
circulation patterns. It would be of particular relevance to incorporate data from the 
Southern (if feasible) and Pacific Oceans if this were to be done. 

 

Key Points: 

• Different physical mechanisms appear to influence rainfall at Rottnest Island and 
Manjimup. 

• There is some evidence that the Southern Oscillation plays a role in causing switches 
between rainfall regimes. 

• Sea surface temperature gradient in the mid-Indian Ocean seems to influence 
switching of rainfall regime at Rottnest Island. It seems to be a leading indicator of 
winter rainfall, and there seems to be the basis for a winter rainfall prediction scheme. 
It also seems to play a role at Manjimup, but is less well defined than for Rottnest 
Island. 

• There is a case for developing switching variables that are combinations of variables 
representing circulation patterns in the Indian, Southern (if feasible) and Pacific 
Oceans. The extension to the Bayesian threshold method discussed below will be of 
some use. 

4.2. Statistical Issues 
The statistical methodology has been found to work well on a practical level. It is 
reasonably straightforward to simultaneously identify important lags and estimate the 
corresponding parameters. The identification of the number of thresholds and the delay is 
somewhat ad hoc however. In standard practice penalised likelihood methods would be 
used, although not particularly satisfactorily. However, a more promising approach is to 
use spline methods to estimate the generating mechanism of the time series. In this richer 
setting the thresholds become knot points, and the choice of knot points is a somewhat 
easier problem to solve. The delay is expressed through the lags associated with the knot 
points, and is essentially automatic. The methodology developed so far seems to be 
reasonably straightforward to adapt to this more general approach. 

During the final phase of IOCI we will produce probability distributions for forecasts, 
which will incorporate a complete statement of uncertainty. These probability 
distributions can also be used to validate the nonlinear modelling. 
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An issue that has yet to be resolved in an entirely satisfactory way is the choice of prior 
distributions for the model orders in each regime. The results reported here use Poisson 
distributions, but some of our results suggest that better mixing could be obtained by 
placing a hyper-prior on the Poisson mean- a gamma distribution would result in a 
negative binomial prior overall. We will investigate this point in the on-going work. 

 

Key Points: 

• The statistical methodology we have developed is working well. 

• Some physically interesting results have already been obtained. 

• Probability forecasts will be produced in the next phase. 

• The choice of prior distributions for model orders has not been fully resolved. An 
approach using hyper-priors on model order will be considered. 

• A collaborative effort with the new nonlinear tool is required to extract maximum 
value from it. 

 

5 Conclusions 
The primary task for CSIRO Mathematical & Information Sciences (CMIS) during this 
phase of IOCI has been to develop the statistical methodology to the point where it can 
usefully be applied. We have reached this point, although there are still some potentially 
useful extensions that can be pursued, particularly in relation to modelling climate 
interactions. However, the focus of CMIS’ work for the remainder of IOCI will be on the 
detailed development and analysis of case studies identified by the contributing partners. 

The case studies described here have been presented in the spirit of testing whether 
sensible results are obtained using the methodology developed, rather than seriously 
seeking rainfall predictors. The task of seeking rainfall predictors is a collaborative 
exercise, which now has an additional nonlinear tool to make use of. In our case studies 
we have found some evidence that predictors such as the Southern Oscillation (SOI) and 
sea surface temperature (SST) gradient have some potential to provide a climate 
switching mechanism in the threshold model framework described by Figure 2. In the 
case of SOI we found a stark difference in that there appeared to be an influence on 
Manjimup rainfall but not on Rottnest Island rainfall. For Manjimup it seems that the 
Southern Oscillation has some impact in extreme cases, but by no means supplies a 
complete picture. 

There is some evidence that SST gradient in the mid-Indian Ocean causes switching of 
rainfall regime at Rottnest Island in particular, and clearly seems to be linked to winter 
rainfall. There is a basis here for exploring predictive models for winter rainfall. There 
does also seem to be some influence on Manjimup rainfall. It could well be that an 
underlying climate switch should be formed from a combination of processes, rather than 
Indian and Pacific Ocean influences on their own. The methodology developed by CMIS 
could be adapted to aid a search for such combinations.  
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Key Points: 

• We have developed a physically motivated statistical model (‘Bayesian switching 
model’) for modelling nonlinear climate processes. 

• Changes between climate regimes are triggered by a switching variable, and 
alternative switching variables can be compared. 

• The Bayesian switching model can identify good predictors and the lags at which 
they influence climate variables, such as rainfall. 

• We have reached the point where a nonlinear time series approach can be applied to 
practical problems. 

• There is some evidence that SOI and mid-Indian Ocean SST gradients play a role in 
switching between rainfall regimes. This is cited at this stage as evidence that the new 
nonlinear approach is producing sensible results, rather than new insights per se. 

• Interactions between climate processes are likely to influence rainfall in Southwest 
WA. Some reasonably straightforward extensions to the Bayesian switching model 
will facilitate the search for subtler climate teleconnections arising from such 
interactions. 

• The focus of future work will be the development of case studies with IOCI’s 
contributing partners. 
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Appendix A- Glossary 

Cross-referenced terms and acronyms are shown in italics. 

 

Anomaly It is usual to express climate data as deviations from the 

long term average, and this deviation is known as an 

anomaly. 

Bayesian A statistical framework that expresses uncertainty using 

probability distributions. Bayesian statisticians explicitly 

combine data with subjective knowledge to learn about 

physical processes. This is accomplished using Bayes’ 

theorem. 

 

Bayes’ Theorem As implemented in scientific practice, this theorem 

essentially states that uncertainty conditional on available 

data and expert knowledge is proportional to the product 

of the uncertainty in the data and the uncertainty in expert 

knowledge. 

 

Delay In physical systems there may well be a time delay 

between cause and effect, and this is captured by a so-

called delay parameter. 

 

Interaction In physical systems the effect of one variable may depend 

on the value of another. For example, a low pressure 

system will not bring rainfall when sea surface 

temperature is low. In this case sea surface temperature is 

said to interact with air pressure. 
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Knot Point When using splines we divide up the domain of a function 

so that it can be approximated by a set of simple functions. 

The points at which the domain is divided are known as 

knot points. 

 

Linear A general term to describe relationships that can be 

represented as straight lines between two variables, or 

hyperplanes for many variables. 

 

Markov chain Monte Carlo A computationally intensive technique that uses 

simulation techniques to implement Bayesian statistical 

methods. This term is universally known by the acronym 

MCMC. 

 

Nonlinear A general term to describe relationships that cannot be 

described as straight lines or hyperplanes, as is the case for 

linear relationships. 

 

Posterior Distribution A probability distribution that integrates expert knowledge 

and available data, and is typically calculated using Bayes’ 

theorem. 

Reversible Jump MCMC A methodology for choosing optimal statistical models in 

a Bayesian statistical framework, motivated by MCMC 

ideas. 

 

Spline A technique for approximating functions, typically 

accomplished by breaking the domain of the function into 

segments within each of which some simple function is 
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fitted to the data. The boundaries between domains are 

known as knot points. 

 

Switching Variable In threshold models of a physical system a key variable 

causes the system to switch behaviour. This key variable 

is known as a switching variable. 

Time Series A set of data recorded sequentially in time. 
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Appendix B- List of Acronyms 

CLW CSIRO Land and Water. 

CMIS CSIRO Mathematical and Information Sciences. 

CMR CSIRO Marine Research. 

ENSO El Niño-Southern Oscillation 

IOCI Indian Ocean Climate Initiative. 

MCMC Markov chain Monte Carlo. 

SOI Southern Oscillation Index 

SST Sea Surface Temperature. 

SWA Southwest Western Australia. 
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Appendix C- Submitted manuscript describing the statistical 
methods developed by IOCI for the case studies. 
At the time of writing the manuscript is under peer review for possible publication in the 
Journal of Time Series Analysis. A copy of the current version is available from the 
author: 

 e-mail: eddy.campbell@csiro.au 

 Tel: (08) 9333 6203 
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