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SUMMARY 

During the first three years of the Indian Ocean Climate Initiative (IOCI), CSIRO Land and 

Water (CLW) has:  

• Examined the utility of stochastic downscaling models and prospects for their use in a 

statistical-physical, interseasonal climate forecasting system for southwest Western 

Australia (SWA). 

• Used stochastic downscaling as a means of unravelling the causes of the recent low 

precipitation sequence over much of the region. 

Downscaling may be defined as the quantification of the relation of small-scale climate 

variables to larger scale atmospheric patterns.  These patterns may be observed or simulated 

by general circulation models (GCMs). 

Our studies for IOCI Second Research Phase (July 1999 – December 2000) have again 

focused on the application of an extended nonhomogeneous hidden Markov model (NHMM) 

to daily May to October precipitation across a network of 30 stations scattered throughout 

SWA.  This model was selected on the basis of its documented performance and generality. 

The original set of goals proposed by CLW for IOCI Second Research Phase were (IOCI, 

1999): 

• The development of a new NHMM framework that considers precipitation amounts and 

occurrences jointly. 

• Investigation of the stationarity of NHMM parameters using global mean sea level 

pressure (MSLP) data sets. 

• Driving the NHMM with global MSLP data sets to obtain insight into the long-term, 

temporal and spatial changes in historical synoptic patterns over SWA. 
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• Investigation of the relationship between the changes in synoptic patterns over time and 

the observed secular breaks in SWA precipitation. 

• A new study of potential predictability using the new NHMM, the Mark 3 version of the 

CSIRO GCM and an updated historical sea surface temperature (SST) data set. 

• For GCM grid cells around SWA, investigation of the interdecadal variability in a 1000-

year, CSIRO9 Mark 2 GCM run with a view to detecting any secular changes in 

modelled atmospheric series and downscaled precipitation series and identifying their 

causes. 

Five factors led to modification of the above goals.  These factors were: 

• The development and testing of the new NHMM framework described above by our 

collaborators at the National Center for Statistics and the Environment, University of 

Washington, Seattle.  The new framework did not provide a noticeable improvement in 

model performance.  Consequently, we continued our research efforts with the original 

model. 

• The advent of the National Center for Atmospheric Research (NCAR) – National Centers 

for Climate Prediction (NCEP) Reanalysis dataset containing global atmospheric fields 

for the period 1958-1998.  This dataset encompasses the timing of the low inflow 

sequence for the Perth water supply system and the period used for estimating the 

parameters of the NHMM (1978-1992).  The Reanalysis dataset was derived by 

assimilating observed atmospheric data with a high resolution GCM. 

• The postponement of the CSIRO Mark 3 GCM runs described above. 

• An evaluation of the NHMM using the Reanalysis dataset that led to a revision of the set 

of atmospheric variables used by the model. 

• A promising line of investigation regarding the cause of the low precipitation sequence 

over SWA. 
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Consequently the research goals pursued by CLW during IOCI Second Research Phase were: 

• Evaluation of the NHMM using the Reanalysis dataset.  This work would reveal any 

deficiencies in the NHMM and provide insight into the stationarity of its parameters. 

• Following successful evaluation of the NHMM, investigation of the long-term temporal 

changes in historical synoptic patterns over SWA and thus identification of the cause of 

the observed secular breaks in SWA precipitation. 

• Downscaling the 1000-year, CSIRO Mark 2 GCM run with a view to characterising the 

probability of the observed low precipitation sequence. 

Our achievements and preliminary conclusions include: 

• After revision of the set of atmospheric predictor variables used in the NHMM, it was 

found that NHMM parameter estimates derived from atmospheric and precipitation data 

for the period 1978 to 1992, inclusive, could be used to simulate monthly precipitation 

over SWA for the period 1958-1998.  This suggests that the NHMM is robust against 

secular breaks in atmospheric circulation and precipitation, and that it may be a useful 

tool for downscaling an interseasonal climate forecast produced by a GCM. 

• Analysis of the results obtained from the NHMM revealed an abrupt shift and a clearly 

defined trend in the frequency characteristics of synoptic patterns that influence 

precipitation occurrence over SWA.  The timing and nature of these changes are 

consistent with the characteristics of the observed low precipitation sequence. 

• The timing of the shift appears to coincide with the well-documented change in the 

behaviour of the El Niño – Southern Oscillation that occurred in the mid 1970s.  The 

trend appears to be due to a different mechanism, and may be related to changes in the 

behaviour of the Antarctic Oscillation and an interaction between the Oscillation and El 

Niño.  

• The changes in the frequency characteristics of the synoptic patterns and the resultant 

low precipitation sequence since the mid 1970s are due to changes in a combination of 

atmospheric variables reflecting the location and intensity of low and high pressure 
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systems, and the moisture content of the lower troposphere.  The low precipitation 

sequence cannot be ascribed to change(s) in a single variable such as MSLP. 

• Results from the downscaled 1000-year GCM run suggest the recent low precipitation 

sequence over SWA is uncommon but not extreme. 

Future work will involve: 

• Downscaling interseasonal climate forecasts from the coupled ocean-atmosphere CSIRO 

Mark 3 GCM for the winters of 2000 and 2001.  This work will provide information 

about the reliability of forecasts and forecast lead-times. 

• Exploring the Reanalysis dataset with a view to identifying the large-scale climatic 

forcing responsible for the low precipitation sequence since the mid 1970s.  This work 

will involve a detailed investigation of the effects of El Niño and the Antarctic 

Oscillation on SWA precipitation. 

Outcomes from this work will include: 

• An assessment of the utility of downscaled, interseasonal climate forecasts from coupled 

ocean-atmosphere GCMs. 

• Further insight into the large-scale climatic forcing that has caused the low precipitation 

sequence. 
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1. INTRODUCTION 

1.1 Downscaling Climate Model Simulations 

Modelling the response of natural and agricultural systems to climate forecasts requires daily 

data at local and regional scales.  The need for improved quantitative precipitation forecasts, 

and realistic assessments of the regional impacts of natural climate variability and possible 

climate change due to the enhanced greenhouse effect, has generated increased interest in 

regional climate simulation.  Although existing general circulation models (GCMs) perform 

reasonably well in simulating climate with respect to annual or seasonal averages at sub-

continental scales, it is widely acknowledged that they do not provide credible simulations of 

precipitation at the space and time scales relevant to local and regional impact analyses 

(Arnell et al., 1996; Gates et al., 1996). 

The above problems have led to the development of statistical downscaling techniques to 

derive sub-grid scale weather from the coarse spatial resolution atmospheric data available 

from GCMs.  Downscaling techniques include: 

• Modelling the daily precipitation process through multivariate probability distributions 

conditional on explicitly derived, large-scale atmospheric circulation patterns (e.g., 

Bardossy and Plate, 1991, 1992; Bogardi et al., 1993). 

• Regressions on continuous atmospheric circulation indices, geographic location and 

topographical variables (Enke and Spekat, 1997; Huth, 1997; Wilby et al., 1998). 

• Artificial neural networks (e.g., Crane and Hewitson, 1998). 

• Hidden Markov models (see below) 

1.2 Nonhomogeneous Hidden Markov Model (NHMM) 

The downscaling method used herein consists of a nonhomogeneous hidden Markov model 

(NHMM) to simulate precipitation occurrence and multiple linear regression to simulate 

precipitation amounts in southwest Western Australia (SWA) (Hughes et al., 1999; Charles et 

al., 1999).  Recall from IOCI (1999) that the NHMM relates synoptic-scale, atmospheric 
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circulation variables through a finite number of hidden (unobserved) weather states to multi-

site, daily precipitation occurrence data.  The NHMM determines the most distinct patterns in 

a daily multi-site precipitation occurrence record rather than patterns in atmospheric 

circulation.  These patterns are then defined as conditionally dependent on a set of 

atmospheric predictor variables.  The weather states are not defined a priori.  A first-order 

Markov process defines the daily transitions from weather state to weather state.  The process 

is described as nonhomogeneous as the transition probabilities are conditional on a set of 

atmospheric circulation predictors.  The atmospheric predictors may include raw variables 

such as mean sea level pressure (MSLP) or derived variables such as north-south MSLP 

gradient.  In this way, the NHMM captures much of the spatial and temporal variability of the 

precipitation occurrence process. 

Model selection involves sequential fitting of several NHMMs with an increasing number of 

weather states and atmospheric predictors.  The fit is evaluated in terms of the physical 

realism and distinctness of the identified weather states as well as a Bayesian information 

criterion (BIC).  The objective is to select a NHMM that minimises the BIC, thus identifying 

a relatively parsimonious model that fits the data well.  The most likely weather state 

sequence is obtained from the selected NHMM using the Viterbi algorithm.  This permits the 

assignment of each day to its respective state (Hughes et al., 1999).  The ability to classify 

days into weather states that are distinct in terms of spatial precipitation occurrence pattern as 

well as synoptic situation means that the physical realism of the states can be assessed. 

The joint distribution of daily precipitation amounts at multiple sites is evaluated through the 

specification of conditional distributions for each site and weather state (Charles et al., 1999).  

The conditional distributions consist of regressions of transformed amounts at a given site on 

precipitation occurrence at neighbouring sites within a set radius.  An automatic variable 

selection procedure is used to identify the neighbouring sites that provide useful information 

about at-site precipitation amounts.  The neighbourhood radius is determined by steadily 

increasing its size until further increases result in marginal improvements in the proportion of 

total precipitation variability explained by the precipitation occurrences at neighbouring sites. 
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1.3 General Circulation Model 

In this report we used a 1000-year run from the Mark 2 version of the spectral 9-level 

atmospheric GCM developed by the CSIRO Atmospheric Research (hereafter referred to as 

CSIRO9 GCM) at a horizontal resolution of R21 (roughly 700 km).  Descriptions of the 

model can be found in McGregor et al. (1993) and IOCI (1999). 
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2. DESCRIPTION OF STUDY AREA AND DATA 

We defined SWA as the region extending from about 30° to 35° south and 115° to 120° east 

(Figure 2.1).  For the stations depicted in Figure 2.1, the percentage of annual precipitation 

that falls in the period from May to October varies from 66 to 86%: 25 stations have 

percentages greater than 71%. The majority of winter rains come from low pressure frontal 

systems.  Thus we divided the year into the winter half-year (May-October) and summer half-

year (November-April) seasons.  A full set of results for the winter half-year is presented in 

this report. 

 

Figure 2.1 Location of daily precipitation stations in southwest Western Australia (for key to 
numerals see Table 2.1). 

In our earlier work, the NHMM was fit to atmospheric and daily precipitation data for the 

period from 1978 to 1992.  The data were obtained from the Bureau of Meteorology.  

Twenty-five atmospheric variables were derived from this data set, and the data interpolated 

to a rectangular 3.75° longitudinal by 2.25° latitudinal grid.  An additional variable (850 hPa 

to 500 hPa thickness) was added to the list of candidate atmospheric predictors in 2000.  The 

locations of the 30 precipitation stations considered are shown in Figure 2.1.  A key to the 

numerals shown in Figure 2.1 is given in Table 2.1.  These stations have no missing records 

over 1978-92.  Further details are given in IOCI (1999). 
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Table 2.1 Details of Daily Precipitation Stations [Reproduced from IOCI (1999)].  

No. 
(Fig. 2.1) Station Name Station 

No. 
Elevation 

(m) 
Annual 

Precipitation  
(mm) 

1 Dalwallinu P.O. 008039 335.0 357 

2 Moora (Moora Shire) 008091 203.0 461 

3 Wongan Hills Res. Stn 008138 305.0 349 

4 Perth Airport M.O. 009021 20.0 802 

5 Dandaragan (Badgingarra Res. Stn) 009037 260.0 598 

6 Lancelin 009114 4.0 627 

7 Jurien 009131 2.0 560 

8 Bridgetown P.O. 009510 150.0 843 

9 Augusta (Cape Leeuwin A.W.S.) 009518 14.0 1000  

10 Busselton (Cape Naturaliste L.H.) 009519 97.0 830 

11 Donnybrook P.O. 009534 63.0 1002 

12 Dwellingup (Forestry) 009538 267.0 1279 

13 Mandurah (Park) 009572 15.0 888 

14 Pemberton (Forestry) 009592 174.0 1213 

15 Harvey (Wokalup Agric. Res. Stn) 009642 116.0 996 

16 Albany A.M.O. 009741 68.0 805 

17 Bencubbin (Bencubbin) 010007 353.0 320 

18 Cunderdin P.O. 010035 236.0 368 

19 Kellerberrin (composite) 010073 247.0 333 

20 Merredin (Res. Stn) 010093 318.0 309 

21 Beverley P.O. 010515 199.0 422 

22 Corrigin P.O. 010536 295.0 378 

23 Katanning P.O. 010579 310.0 485 

24 Kojonup (composite) 010582 305.0 542 

25 Lake Grace P.O. 010592 286.0 353 

26 Narembeen P.O. 010612 276.0 332 

27 Ongerup (Ongerup) 010622 286.0 383 

28 Pingelly P.O. 010626 297.0 455 

29 Wagin P.O.  010647 256.0 440 

30 Wandering (Shire) 010648 280.0 626 

Most of our analyses for IOCI Second Research Phase were based on the National Center for 

Atmospheric Research (NCAR) – National Centers for Climate Prediction (NCEP) 

Reanalysis dataset (Kalnay et al., 1996).  The dataset contains a long record of global 
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analyses of atmospheric fields for the 41-year period from 1958 to 1998.  Data are available 

at 0000, 0600, 1200, and 1800 GMT on a 2.5° latitude-longitude grid.  The Reanalysis project 

involved the recovery of land surface, rawisonde, pibal, aircraft, satellite, and other data from 

different countries and organisations, data quality control, and the assimilation of the data 

with a frozen state-of-the-art analysis/forecast system.  The use of a frozen system eliminates 

perceived climate jumps associated with changes in the data assimilation techniques.  A 28-

level spectral GCM with a horizontal resolution of T62 (roughly 210 km) is used in the 

assimilation system.  Output variables are classified into four classes (“A” to “D”) depending 

on the degree to which the variables are influenced by observations and/or the GCM.  For 

example, MSLP is a class “A” variable since it is strongly influenced by observational data.  

Humidity is a class “B” variable in that the GCM has a strong influence on its value despite 

the existence of observational data that directly affect it.  Reanalysis data for the atmospheric 

predictors in the NHMM were interpolated to the grid using for NHMM fitting. 

Some studies have reported spurious temporal trends in Reanalysis fields (e.g., Hines and 

Bromwich, 1999; Marshall and Harangozo, 1999).  We screened each atmospheric predictor 

series for changes in mean level that were large relative to the background variability in the 

Reanalysis data.  We used the nonparametric jump-detection algorithm proposed by Qiu and 

Yandell (1998) to screen each of the atmospheric predictor series for spurious jumps in their 

means.  Predictors that exhibited departures from normality were transformed prior to 

analysis.  Given that the daily atmospheric predictor series for each winter half-year are 

serially correlated, we used a small window width to reduce the dependence as far as 

possible. 

The data from the 1000-year GCM run were interpolated to the rectangular grid described 

above.  The historical and modelled atmospheric data were centred using their respective 

means.  This removes the effects of any bias in the modelled means on the downscaled 

simulations.  There did not appear to be any bias in the modelled variances.  Atmospheric 

variables derived from the modelled data were used as input to the NHMM: the NHMM was 

not fit to the GCM data. 
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3. EVALUATION AND MODIFICATION OF DOWNSCALING MODEL 

3.1 Introduction 

Recall from IOCI (1999) that a 6-state NHMM with three atmospheric predictors [the mean 

of MSLP across five grid points (hereafter referred to as mean MSLP), north-south MSLP 

gradient, and dew point temperature depression at 850 hPa (  could provide credible 

reproductions of at-site precipitation occurrence probabilities and their spatial association, 

and dry- and wet-spell length statistics at the seasonal (six-monthly) scale for the gauges 

listed in Table 2.1.   is defined as the difference between the air and dew point 

temperatures at 850 hPa.  Therefore, it is a measure of humidity in the lower troposphere.  A 

dry spell is defined as a sequence of consecutive days during which daily precipitation 

remains below 0.3 mm.  A wet spell is defined as a sequence of consecutive days during 

which daily precipitation equals or exceeds 0.3 mm.  The precipitation occurrence patterns 

and the composite MSLP fields associated with the weather states are given in Figure 3.1. 

)]dDT 850

850
dDT

In this section we use the NCEP-NCAR Reanalysis dataset to evaluate the NHMM.  One 

thousand 41-year sequences of daily May to October precipitation were generated from the 

fitted NHMM, conditionally on the atmospheric predictors extracted from the Reanalysis 

dataset.  For the first time the model’s performance is subjected to scrutiny on a monthly 

rather than a seasonal time scale, and an out-of-sample-validation over a period that is wetter 

than but similar in length to the fitting period.  Initial results indicated that the NHMM was 

inadequate.  It was evident that the intraseasonal variation in the atmospheric circulation over 

SWA had not been fully captured by the model.  Further investigation led to an augmented 

atmospheric predictor set for the NHMM.  The modified NHMM is shown to resolve most of 

the performance deficiencies of the original model. 
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Figure 3.1(a) Precipitation occurrence patterns and MSLP averaged over all days classified under 
weather states 1 to 3.  The diameters of the circles indicate daily precipitation occurrence probabilities at 

each site. 
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Figure 3.1(b) Precipitation occurrence patterns and MSLP averaged over all days classified under 
weather states 4 to 6.  The diameters of the circles indicate daily precipitation occurrence probabilities at 

each site. 
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3.2 Evaluation of the NHMM 

Figure 3.2 compares the simulated daily precipitation occurrence probabilities with historical 

values for the 30 sites for each month in the winter half-year over the fitting period (1978-

1992).  The NHMM underestimates precipitation occurrence during the wettest months (June 

and July) and overestimates occurrence in the driest months (September and October).  

Performance deficiencies are also apparent for May and August.  Moreover, there is a 

cyclical variation in the sign and magnitude of the bias in the simulated probabilities across 

the winter half-year.  
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Figure 3.2 Comparison of simulated and historical daily precipitation probabilities 
for the period 1978–1992. 

Similar problems were evident in the precipitation amount simulations.  The seasonal 

distribution of the errors in the simulation of monthly precipitation amounts for Pingelly is 

given in Figure 3.3.  The standardised residuals shown are defined by )(ei

 Tismre iiii ,,1,)( K=−=  (1) 

where  is the observed monthly precipitation amount for the ith month,  and s  are the 

mean and standard deviation of the 1000 simulated amounts for the ith month, and 

ir im i
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9015*6 ==T  for the 15-year fitting period.  The standardised residuals exhibit a cyclical 

variation through the winter half-year.  The simulated precipitation amounts for May and 

August are close to the observed, but the fit is poor to very poor for the remaining winter 

months.  This suggests that at least one additional predictor is required for downscaling 

experiments at the monthly time scale. 
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Figure 3.3 Box plots showing seasonal distribution of standardised residuals for Pingelly (Station 
28) for the period 1978–1992.The edges of the boxes mark the upper and lower quartiles.  The horizontal 
line within each box denotes the median, and the end points of the whiskers attached to each box denote 

the extremes.  If the notches on two boxes do not overlap, this indicates a difference in location that is 
roughly significant at the 5% level. 

An exhaustive but essentially fruitless search was undertaken to identify which of the 

remaining 23 atmospheric variables could account for the bias in the NHMM simulations.  

This suggested that the use of a combination of predictors might be required.  We used 

canonical correlation analysis (CCA) to quantify the correlations between linear 

combinations of the precipitation occurrence residuals for the 30 sites and linear 

combinations of the atmospheric predictors for 1978-1992.  In CCA, the pair of linear 

combinations having the highest correlation is determined first.  The next pair to be 

considered has the highest correlation among all pairs that are uncorrelated with the first pair, 

and so on.  The pairs of linear combinations are called canonical variables, and their 

correlations are called canonical correlations (Kshirsagar, 1972; Jobson, 1992).  

Prior to the CCA, two atmospheric variables (“10” and “11”) were removed from the 

predictor set since they are linear combinations of other predictors.  Thus the number of 

canonical variables and correlations is min (30, 24) = 24.  (Recall that there are 30 sites and 
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that there were 26 predictors before predictors “10” and “11” were dropped.) The 

atmospheric variables were standardised to zero mean and unit variance.  The precipitation 

occurrence residuals are defined by  
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in which the probabilities  and  are determined from the fitted NHMM. We 

transformed the  to normality using an inverse probit transform.  The estimates of the first 

three estimated canonical correlations were 0.568, 0.516 and 0.326. 
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A bar chart of the standardised coefficients for the first atmospheric canonical variable is 

given in Figure 3.4.  This variable has a relatively large positive coefficient for variable “1” 

(mean MSLP), and relatively large negative coefficient for variable “2” (mean geopotential 

height at 500 hPa), and moderate positive coefficients for variables “7” (east-west MSLP 

gradient), “25” (850 hPa to 500 hPa thickness), and “26”    ).( 850
dDT

1 5 10 15 20 25

Atmospheric  predictor
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Figure 3.4 Bar chart of standardised coefficients for the first atmospheric canonical variable (for 
completeness, coefficients for variables “10” and “11” are shown as zero.) 
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A map of the standardised coefficients for the first precipitation occurrence residual canonical 

variable (hereafter called the first residual canonical variable) is given in Figure 3.5.  Stations 

with large negative coefficients are concentrated along the south coast of SWA.  Stations 

with large positive coefficients are located in the northeast corner of SWA and along the west 

coast.  Thus the first residual canonical variable contrasts the error in the NHMM fit for 

stations along the south coast with that for the northeast corner and west coast.  The moderate 

positive correlation between the first residual and atmospheric canonical variables suggests 

that this contrast is higher when centred mean MSLP, east-west MSLP gradient and  

are large relative to centred mean geopotential height at 850 and 500 hPa. Thus if rainfall 

occurs over SWA, it is more likely to occur in the north rather than the south due to the 

presence of a midlevel trough over the region or to the west.  When centred mean MSLP, 

east-west MSLP gradient and  are small relative to centred mean geopotential height at 

850 and 500 hPa, rainfall will tend to occur in the south relative to the north due to a high 

pressure system situated to the west of SWA with a ridge forming along the south coast.  
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Figure 3.5 Map of standardised coefficients for the first precipitation occurrence residual canonical 
variable.  Circles denote positive coefficients and squares negative coefficients.  The diameter of the 

circles and the lengths of the sides of the squares are in direct proportion to the magnitude of the 
coefficients.  

Figure 3.6 shows box plots of the first canonical variables for each month in the winter half-

year.  A seasonal cycle in both variables is apparent, and it is consistent with the size and sign 

of the bias evident in Figure 3.3.  Pair-wise comparison of the notches on the boxes suggests 

that there is a noticeable difference between the medians from month to month.  
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Figure 3.6 Box plots of the first canonical variables grouped according to calendar month. 

Table 3.1 summarises the features of the scatter plots of the first atmospheric and residual 

canonical variables (y- and x-axes, respectively) for each weather state.  For a given weather 

state, concentration of the values of these variables in a particular quadrant of the scatter plot 

indicates that the variables contain information about the occurrence of that state.  Consider 

the columns of Table 3.1.  Of the 362 data points in the 1st quadrant (upper left-hand side), 

88% correspond to days assigned to States 3 to 6, and 61% to days assigned to States 4 and 5.  

These percentages are well above the percentage that would have been if all of the data points 

in the 1st quadrant had been distributed uniformly across the six weather states (i.e., 17% per 

state).  Similarly, 88% of the 993 data points in the 2nd quadrant (upper right-hand side) 

correspond to days assigned to States 1, 2, 3, and 5 and 65% to days assigned to States 2 and 

5.  About 71% of the 401 data points in the 3rd quadrant (lower right-hand side) correspond to 

days assigned to States 2, 3 and 5.  Also, 93% of the 1004 data points in the 4th quadrant 

(lower left-hand side) are correspond to days assigned to States 3 to 6, and 81% to days 

assigned to States 4, 5 and 6.  Now consider the rows of Table 3.1.  About 51% of the data 

points assigned to State 1 and 71% of the data points assigned to State 2 are located in the 2nd 

quadrant.  About 53% of the data points assigned to State 4 and 70% of the data points 

assigned to State 6 are located in the 4th quadrant.  These percentages are well above the 

percentage that would have been if all of the data points in a given weather state had been 

distributed uniformly across the quadrants (i.e., 25% per quadrant).  Finally, consider positive 

values of the first atmospheric canonical variable alone.  About 60%, 76%, 47%, 36%, 48%, 

and 25% of the data points for States 1 to 6, respectively, fall in the 1st and 2nd quadrants. 
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Thus the first atmospheric canonical variable captures information about the occurrences of 

States 2, 6 and, to a lesser extent, State 4.  

Table 3.1 Numbers of Data Points in Quadrants of the Scatter Plots of the First Canonical 
Variables for Each Weather State in the Modified NHMM.  

Weather Quadrant  

State 1st 2nd 3rd 4th Subtotal 

1 16 90 38 34 178 

2 29 385 94 38 546 

3 46 137 86 121 390 

4 113 90 59 297 559 

5 106 264 106 290 766 

6 52 27 18 224 321 

Total 362 993 401 1004 2760* 

* (1992-1978+1) (31+30+31+31+30+31) = 2760. 

3.3 Modification of the NHMM 

The results described in section 3.2 suggest the incorporation of the first atmospheric 

canonical variable into the predictor set for the NHMM.  A stepwise regression analysis and 

an analysis of all-subset regressions based on leaps and bounds were undertaken to see 

whether a small subset of the 24 atmospheric variables could capture most of the information 

in the first precipitation canonical variable.  This did not prove to be the case.  Consequently, 

a NHMM with four atmospheric predictors (the fourth being the first atmospheric canonical 

variable) was fit to the observed atmospheric and precipitation data for 1978-92.  The 

precipitation occurrence patterns and the composite MSLP fields associated with the weather 

states for the modified NHMM are almost identical to those given in Figure 3.1 and will not 

be given here for the sake of brevity. 

Figure 3.7 compares the daily precipitation occurrence probabilities simulated by the 

modified NHMM with historical values for each month in the winter half-year over the 

period 1978-1992.  Comparison of Figures 3.2 and 3.7 reveals a noticeable improvement in 

model fit, particularly for the months of June and July (the wettest months of the year) and 

October (the driest month of the winter half-year).  
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Figure 3.7 Comparison of simulated and historical daily precipitation probabilities for the period 
1978–1992 (modified NHMM). 

The seasonal distribution of the errors in the simulation of monthly precipitation amounts for 

Pingelly is given in Figure 3.8.  Comparison of Figures 3.3 and 3.8 reveals a noticeable 

improvement in fit for the months of June, July, October, and perhaps September.  
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Figure 3.8 Box plots showing seasonal distribution of standardised residuals for Pingelly (Station 
28) for the period 1978–1992 (modified NHMM).  
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The seasonal distribution of the monthly standardised residuals for Pingelly for the test period 

1958 to 1977 is given in Figure 3.9.  (Recall from section 3.2 that data for this period were 

not used to fit the NHMM.)  The residuals exhibit a cyclical variation through the winter half-

year.  However the line  lies between the upper and lower quartiles in each case.  With 

the exceptions of July and August, the distributions of the residuals are not symmetrical about 

the median in their middle regions (25th to 75th percentiles), and other diagnostics such as 

quantile-quantile plots (not shown) indicate departures from normality. The distribution for 

July contains an apparent outlier ( .  Little evidence of serial correlation was found 

in the residuals.  Consequently, we used the Wilcoxon signed-rank statistic to test the null 

hypothesis that the mean of the standardised residuals for a given month is zero against the 

alternative hypothesis that the mean is not zero.  The test statistics for the months May to 

October were found to be significant at the 0.189, 0.011, 0.185, 1.00, 0.575, and 0.105 levels.  

Thus there is little evidence against the null hypothesis for all months other than June for 

which there is some evidence against the null hypothesis.   

0=e

)02.4=e

 

Figure 3.9 Box plots showing seasonal distribution of standardised residuals for Pingelly (Station 
28) for the period 1958–1977 (modified NHMM).  

A time series plot of monthly standardised residuals for Pingelly for the period 1958 to 1998 

is given in Figure 3.10.  Overall, the residuals form a horizontal band of uniform height 

centred about the line e  and 3% of the standardised residuals lie outside of the interval 

.  Similar plots have been obtained for the remaining 29 stations.  All stations 

have monthly standardised residuals greater than 3, but these residuals comprise only 1.3% of 

the 30*6*41=14760 station-months and do not exhibit any temporal trends.  This suggests 

,0=

22 ≤≤− e
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that the atmospheric predictors in the modified NHMM have accounted for any long-term 

time effects (such as changes in the atmospheric circulation over SWA) that are inherent in 

the Reanalysis data.  Given that the period 1958 to 1977 was wet relative to 1979 to 1992, 

this suggests that the modified NHMM is robust against the effects of climate shifts and 

trends on precipitation over SWA. 
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Figure 3.10 Monthly standardized residual series for Pingelly (Station 28) for the period 1958–1998 
(modified NHMM).  Broken vertical lines denote the fitting period for the NHMM (1978 to 1992). 
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4. EXPLANATION FOR THE MULTIDECADAL, WINTER PRECIPITATION 

DECLINE OVER SOUTHWEST AUSTRALIA 

4.1 Introduction 

The overall decline in annual precipitation over SWA since around the middle of the 20th 

century has been the subject of much interest [see citations in IOCI (1999) and Tapp and 

Cramb (2000)].  Most of the decrease is evident in the winter half-year (May-October) when 

about 80 percent of the annual precipitation occurs.  The number of rain days in the winter 

half-year has decreased over much of the region, and the average intensity and frequency of 

rare high-precipitation events during that season have decreased. 

The winter precipitation decline has had a marked effect on the surface water resources of the 

Perth region over the last 25 years.  Figure 4.1 shows a bar chart of the total annual inflow for 

the major reservoirs in the Perth water supply system.  The water year is defined by the 

period from May to April.  Since the 1975 water year, dam inflows have been consistently 

smaller than those in the past and, with only one exception (1996), smaller than the long term 

mean annual inflow.  Only once has an annual total precipitation at Perth exceeded the 70th 

percentile since 1967 (Tapp and Cramb, 2000). 
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Figure 4.1 Annual inflow series for major surface water sources, Perth Water Supply System.  
Dashed line shows mean annual inflow for complete record.  (Series supplied by Water Corporation of 

Western Australia.) 
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The timing of the abrupt shift in the inflow series roughly coincides with changes to the 

frequency characteristics of El Niño and a marked warming in the Indian Ocean after 1976 

(see citations in Clark et al., 2000).  Since 1975, El Niños are twice as frequent as La Niñas.  

This suggests that an investigation of the atmospheric circulation over SWA for the period 

covered by the Reanalysis dataset (1958-1998) could be revealing. 

4.2 Approach 

The linkage between the winter precipitation decline and regional changes in atmospheric 

circulation are investigated using the NCEP-NCAR Reanalysis dataset, observed daily 

precipitation series for the 30 sites shown in Figure 2.1, and the modified nonhomogeneous 

hidden Markov model (NHMM) described in section 3.  Recall that the transition from a 

given weather state to another in the NHMM is conditioned on a relatively small number of 

atmospheric variables (predictors) derived from the Reanalysis dataset.  Thus any changes in 

the evolution of the weather states may be linked to temporal changes in the atmospheric 

predictors. 

We hypothesized that the recent precipitation decline in SWA was caused by a change in the 

atmospheric circulation that occurred around 1976; and that this change would manifest itself 

in both the atmospheric predictor series used to condition the weather state transition 

probabilities in the NHMM and the weather state sequence derived from the fitted NHMM. 

We split the atmospheric predictor series and the weather state sequence into two parts with 

the breakpoint occurring at October 31st in either 1974, 1975, 1976, 1977, or 1978.  These 

breakpoints encompass the large-scale climate shift that occurred around 1976.  The periods 

from 1958 to the breakpoint year, and the year following the breakpoint to 1998, are hereafter 

called Epoch 1 and Epoch 2. 

Our analysis consisted of three parts: 

(1) Comparison of the NHMM weather state sequence for 1958 to the mid–70s with that 

for the mid–70s to 1998.  The comparison was made on a winter and a calendar month 

basis.  Plots of weather state probability series were used to discern any changes in 

synoptic patterns that may have occurred prior to the mid-70s. 
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(2)  An exploratory data analysis comparing the atmospheric predictor series for Epoch 2 

with that of Epoch 1. 

(3) A sensitivity analysis to investigate whether the precipitation decline since the mid–

70s can be attributed to changes in the behaviour of a single predictor in the NHMM. 

4.3 Methods 

4.3.1 Analysis of Weather State Sequence 

a. Changes in steady-state probabilities of weather states 

We used a two-sample t-test to assess the statistical significance of differences between the 

means of the winter weather state probability series for Epochs 1 and 2.  Exploratory analyses 

indicated that the data did not exhibit significant autocorrelation or departures from 

normality.  Rather than set an essentially arbitrary significance level, we used the probability 

value (P-value) to measure the strength of the evidence against the null hypothesis that the 

means are equal.  The P-value is the probability that a test statistic at least as extreme as that 

observed could have arisen by chance. 

b. Changes in weather state counts for each calendar month in winter 

When the sampling interval is reduced from six months to one month, the number of 

occurrences of any given weather state is relatively low.  Therefore, it is more appropriate to 

consider weather state counts (a discrete random variable) rather than weather state 

probability (a continuous random variable).  Given that weather state counts series are 

discrete, we used lag plots to check for serial correlation in the counts series for each period: 

little evidence of serial correlation was found.  An exploratory analysis of the counts data 

indicated that the underlying probability distributions were multimodal.  This precluded 

inferences based on commonly used discrete probability distributions.  Consequently, we 

used randomization to test the hypothesis that average weather state counts for Epoch 2 are 

the same as those for Epoch 1.  That is, to test whether the observed counts series for the 

weather states are likely or unlikely to have arisen by chance. 

Randomization testing is a procedure that is less dependent on distributional assumptions 

than conventional statistical methods.  It involves the determination of the P-value of a test 

statistic computed for an observed dataset by comparing the statistic's value with the 
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distribution of values obtained by calculating the test statistics for a large number of re-

orderings of the data (Manly, 1991).  Here the P-value is the proportion of values that are as 

extreme or more extreme than the test statistic's value in the randomization distribution. 

Box plots of the weather state counts data indicated the presence of extreme sample values 

and long-tailed probability distributions in several instances. Thus the sample mean would be 

a poor estimator of location. For each calendar month m and weather state s we test for a 

difference between the median weather state counts for Epochs 1 and 2. The test statistic is 

defined by 

 msmsms ccc 21
~~~ −=  (4) 

where msc1
~  and msc2

~  are the median counts for weather state s in Epochs 1 and 2, 

respectively. We used two-sided tests throughout since marked increases or decreases in 

weather states counts across the two epochs are of interest. Thus large positive and large 

negative values of msc~  are regarded as evidence against the null hypothesis that the medians 

are equal. We used 5000 randomizations for each m and s pair in (4) since complete 

enumeration of all possibilities would require an impractical 12

i

10)!2041(!20! ≈−41  re-

orderings of the observed dataset. 

c. Changes in weather state transition probabilities 

The application of 6×6=36 univariate two-sample t-tests to the components of weather state 

transition probability matrices could lead to the possibility of obtaining a significant result by 

chance alone.  Therefore, we used the Hotelling two-sample T2-test.  Let N denote the 

number of weather states and   denote a transition probability matrix with 

elements: 

,X ),,,1( Ni L=

 nNjSSPx ij
i
j ,,1,1,,1;)|( LL =−== τ

ττ  (5) 

where τ)|( ij SSP  denotes the estimated one-step transition probability of going from 

weather state i on one day to weather state j on the next day during year  The probability 

τ)iS|( NSP  is ignored since 

.τ
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We used the Hotelling two-sample T2-statistic to test the null hypothesis that the population 

mean vectors of the transition probability matrices for both Epochs are identical against the 

alternative hypothesis of different means (Chatfield and Collins, 1980).  Let  and  

denote the matrices defined by (5) for the pre-1978 and post-1978 periods, respectively.  The 

T2-statistic is defined by 

i i
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where i
1x  and i

2x  denote the column means of  and , the superscript T denotes the 

transpose of a vector or matrix, and S denotes the pooled estimate of the common covariance 

matrix: 

i
1X i

2X

 
2

)1()1(

21

2211
−+

−+−
=

nn
nn SSS  (8) 

in which  and  denote the sample covariance matrices of  and .  The statistic 1S 2S i
1X i

2X
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has the variance ratio F distribution with degrees of freedom p and n  .121 −−+ pn

The T2-distribution is a multivariate generalization of the Student t-distribution.  Thus the T2-

test assumes that the transition probability matrices have a multivariate normal distribution 

with the same, though unknown, covariance matrix.  Although the T2-statistic is not sensitive 

to the assumption of equal covariance matrices when the sample sizes are approximately 

equal, severe departures from normality may be cause for concern.  Consequently, we used 

randomization tests with 5000 randomizations each to check the P-values of the T2-statistics 

computed from the observed transition probability matrices. 
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4.3.2 Exploratory Analysis of Atmospheric Predictor Series 

The exploratory analysis focused on comparisons of the probability distributions of the 

predictors for Epochs 1 with those for Epoch 2.  The analysis consisted of two plots for each 

predictor: a Tukey mean-difference (m-d) plot (Cleveland, 1993); and a plot of the smoothed 

density estimates (Venables and Ripley, 1994) for each Epoch.  Let  and  denote the 

pth quantile for a given predictor for Epochs 1 and 2, respectively.  (The pth quantile is the 

value of the predictor below which 100p of the values fall.) The m-d plot graphs the 

differences  against the means 

p1E E

EE −

p2

pp 21 .2)( EE +

850

1−

,2,1(), =iF

21 pp  Thus the differences will be zero if 

the empirical distributions for Epochs 1 and 2 are the same, while systematic deviations from 

the zero difference line indicate the nature and size of differences between the distributions.  

Density estimates can give valuable indications of features such as skewness and 

multimodality in data.  The oldest density estimator for univariate data is the histogram.  

However, the interpretation of the features in a histogram is sensitive to the choice of the 

number of class intervals and starting point of the class intervals.  We used kernel density 

smoothers instead. 

4.3.3 Sensitivity Analysis 

The atmospheric predictors enter the NHMM in a nonlinear fashion.  Therefore, it is difficult 

to discern whether the low precipitation sequence is due to changes in one atmospheric 

predictor alone or a combination of predictors.  We assessed the impact of a change in the 

distribution of any one of the three key predictors (mean MSLP, north-south MSLP gradient 

and  by transforming its pre-1978 distribution to its post-1978 distribution.  For a 

given key predictor x, the transformation is described by  where  and  

denote Epochs 1 and 2, and  denotes the cumulative distribution function for 

the ith Epoch.  The transformed values of the fourth predictor (i.e., first atmospheric canonical 

variable) were determined using the  values and the pre-1978 values for the remaining 23 

predictors.  One-thousand, 20-year sequences of daily winter precipitation were generated 

from the fitted NHMM, conditionally on the 20-year sequence for each transformed 

atmospheric predictor with the pre-1978 distributions for the remaining key predictors left 

unchanged.  The statistics of the simulated weather state and precipitation sequences obtained 

were then compared with those obtained from simulations driven by the post-1978 data.  
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4.4 Results 

4.4.1 Analysis of Weather State Sequence 

Table 4.1 reports the results of the two-sample, two-sided t-tests for the steady-state 

probability series for States 3 and 5.  There is very strong evidence against the null 

hypothesis for State 3, and the strength of the evidence is insensitive to breakpoint selection.  

Some sensitivity to breakpoint selection is evident for State 5.  Nevertheless, the strength of 

the evidence against the null hypothesis is strong to very strong.  For States 1, 2, 4, and 6, the 

P-values lie in the interval 0.087 ≤ P-value ≤ 0.798.  Thus there is little evidence against the 

null hypothesis for these states. 

Table 4.1 Comparison of mean probabilities of States 3 and 5 for Epochs 1 and 2.  

 State 3 State 5 
Breakpoint t-statistic P-value t-statistic P-value 
1974 5.313 4.64 × 10-6 -4.182 1.58 × 10-4 
1975 5.240 5.86 × 10-6 -3.621 8.35 × 10-4 
1976 5.024 1.16 × 10-6 -3.654 7.58 × 10-4 
1977 4.488 6.21 × 10-5 -3.296 0.002 
1978 4.158 1.70 × 10-4 -2.905 0.006 

Table 4.2 reports the results of the randomization tests for monthly weather state counts for 

States 3 and 5.  Some sensitivity to breakpoint selection is evident.  However, for July and 

August there is strong evidence against the null hypothesis that mean State 3 counts for 

Epoch 2 are the same as those for Epoch 1.  October is the only month for which the evidence 

against this null hypothesis is weak.  For May to August, there is some to very strong 

evidence against the null hypothesis that mean State 5 counts for Epoch 2 are the same as 

those for Epoch 1.  

Table 4.3 reports the results of the Hotelling two-sample T2-tests for the weather state 

transition probability matrices for States 2, 3 and 5.  (For States 1, 4 and 6 there is little 

evidence against the null hypothesis that the population mean vectors of the transition 

probability matrices for both Epochs are identical.)  The P-values obtained using the 

distributional assumption about the transition probability matrices and randomization are in 

essential agreement, and are fairly insensitive to breakpoint selection.  For transitions from 

State 2 there is very strong evidence against the null hypothesis that the population mean 
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vectors for both Epochs are identical.  Inspection of time series plots of )|( 23 SSP  and 

)|( 24 SSP  for 1958-1998 revealed underlying decreasing and increasing trends, respectively.  

Thus the corresponding means for Epochs 1 and 2 are quite different.  In contrast, there is 

little evidence that the transition probabilities from any state to State 2 have changed. For 

transitions from State 3 there is strong to very strong evidence against the null hypothesis.  

The mean )|( 33 SSP  for Epoch 2 is lower than that for Epoch 1, while the mean )3S|( 5SP  

for Epoch 2 is noticeably higher than that for Epoch 1.  These findings provide further insight 

into the change in frequency of State 3 in that the day-to-day persistence of State 3 has 

decreased and the frequency of the transition from State 3 to dry conditions region-wide 

(State 5) have increased during 1958-1998.  The P-values for transitions to State 3 are 

sensitive to breakpoint selection, and the level of evidence against the null hypothesis ranges 

from little to strong. There is little evidence against the null hypothesis that the probabilities 

of transitions from State 5 to any other state or the same state have not changed. However, for 

transitions to State 5 there is strong evidence against the null hypothesis: for Epoch 2 the 

, ,,1 K=j)|( 5 jSSP  ,  are higher than those for Epoch 1.  6

Table 4.2 P-values from randomization tests on monthly weather state counts for States 3 and 5.  

Break- Winter Month 
point May June July August September October 

State 3 
1974 0.016 0.002 0.002 0.002 0.013 0.109 
1975 0.012 3 × 10-4 0.003 0.002 0.003 0.024 
1976 0.015 0.013 0.002 0.002 0.003 0.054 
1977 0.015 0.008 0.006 0.004 0.012 0.073 
1978 0.011 0.010 0.004 0.007 0.003 0.050 

State 5 
1974 0.002 1 × 10-4 1 × 10-4 0.011 1 × 10-4 0.007 
1975 0.006 0.002 1 × 10-4 0.014 0.033 0.018 
1976 0.016 0.004 1 × 10-4 0.014 0.055 0.016 
1977 0.014 0.011 0.014 0.016 0.122 0.036 
1978 0.007 0.046 0.024 0.012 0.209 0.209 
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Table 4.3 Results of Hotelling two-sample T2-tests comparing the mean weather state transition 
probabilities for Epochs 1 and 2.  

Weather  Transition From State S Transition to State S 
State, S F statistic P-value* F statistic P-value* 

1974 
2 7.754 0.0001 1.834 0.124 
3 5.363 0.0009 3.838 0.0054 
5 0.632 0.677 4.123 0.0035 

1975 
2 6.828 0.0002 1.691 0.155 
3 4.199 0.0043 4.016 0.0041 
5 0.471 0.795 3.892 0.0050 

1976 
2 6.081 0.0004 2.058 0.0864 
3 5.294 0.0010 3.096 0.0166 
5 0.888 0.500 4.570 0.0019 

1977 
2 8.246 < 0.0001 1.403 0.244 
3 4.000 0.0056 2.822 0.0256 
5 0.590 0.708 3.736 0.0063 

1978 
2 8.823 < 0.0001 1.226 0.319 
3 3.536 0.011 2.263 0.0622 
5 0.503 0.772 4.311 0.0027 

* P-values based on the assumption that transition probability matrices have a multivariate normal distribution.  

Although the above results may seem to be inconsistent with those reported in Table 4.1, the 

relationship between the steady state and transition probabilities is described by the following 

system of equations: 
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Hence  is a nonlinear function of the components of the ith column of the transition 

probability matrix, and the effects of changes in these transition probabilities on the steady 

state probability will not take a simple form.  
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Plots of the winter weather state probability series for states 3 and 5 are given in Figure 4.2.  

Although interannual variability is evident in both plots across the 1958-98 period, it is 

apparent that the frequency of State 3 declined from 1958 to the mid–70s and has remained 

stationary since that time (Figure 4.2a).  In contrast, the frequency of State 5 increased 

abruptly around the early to mid–70s (Figure 4.2b) and has remained stationary since the 

apparent break.  Consider the precipitation occurrence patterns and corresponding 

composited MSLP fields for States 3 and 5 given in Figure 3.1.  If kinks in the isobars of low 

pressure systems in MSLP charts can be interpreted as indicative of the presence of cold 

fronts (Sturman and Tapper, 1996, p. 171), a reduction in the frequency of State 3 indicates a 

reduction in the occurrence of post-frontal rainfall.  An increase in the frequency of State 5 

indicates a decrease in the number of rain days across SWA.  This is due to an increase in the 

frequency of dry easterly or northeast winds around high pressure systems centred to the east 

of the region. 
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Figure 4.2 Interannual variability of steady-state probabilities for weather states 3 and 5. 

The underlying shift and trend evident in Figure 4.2 suggest that the observed low 

precipitation sequence is due to climate forcing by at least two large-scale and possibly 

interacting mechanisms.  The mid-70s break in the probability series for States 3 and 5 

roughly coincides with the timing of the observed change in the behaviour of El Niño (see 

section 4.1).  The presence of high pressure systems in the Australian region is more 

pronounced during El Niño episodes, and the change in the frequency of State 5 is consistent 

with the decline in the number of La Niña episodes relative to El Niños.  The decline in the 
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frequency of State 3 may be linked to a change in the behaviour of the Antarctic Oscillation.  

One index of the Oscillation is the first empirical orthogonal function (EOF) of sea level 

pressure (SLP) for the latitudinal band between 20 and 60º S.  Figure 4.3(a) depicts the SLP 

anomaly when the index is positive; a region of lower than usual SLP surrounds the Antarctic 

continent while regions of higher than usual SLP occur at middle latitudes.  Under these 

conditions, westerly airflow in the mid latitudes is suppressed.  Figure 4.3(b) shows the index 

time series derived from the Reanalysis record by CAR.  The index is negative in sign prior 

to the mid-70s, and positive thereafter.  Also, the index increases from high negative values 

in the early 1960s to positive values in the late 1970s.   

Inspection of Figure 3.1 suggests that States 2 and 4 also involve southwest to westerly 

airflow. As noted above, the mean transition probabilities from State 2 for Epoch 2 are 

different to those for Epoch 1.  Comparison of the composite MSLP plots for States 2 and 3 

suggests that both conform to the typical pattern of a trough between two anticyclones that is 

conducive to the development of cold fronts. Fronts separate two air masses of contrasting 

wind, temperature and density, and in the Australian region are largely due to the interaction 

of subtropical and polar air. These features are not as apparent in the composite MSLP plot 

for State 4. State 4 appears to be indicative of weak frontal systems, or frontal systems that 

are centred too far south to penetrate the hinterland. Recall that no significant change in the 

steady-state or transition probabilities for State 4 was detected.  Overall, these results suggest 

that the hypothesised linkages between the low precipitation sequence and changes in the 

behaviour of El Niño and the Antarctic Oscillation need to be subjected to a detailed 

meteorological analysis.  

4.4.2 Exploratory Analysis of Atmospheric Predictor Series 

Figure 4.4 shows mean-difference and smoothed density plots for the key atmospheric 

predictors when Epochs 1 and 2 are defined as the periods 1958–76 and 1977–98, 

respectively.  The post-1976 changes in the probability distributions of the predictors differ 

from each other.  The MSLPs for Epoch 2 are roughly equal to MSLPs for Epoch 1 plus a 

constant of 0.6 hPa.  The spread of N-S MSLP gradient for Epoch 2 is marginally larger than 

that for Epoch 1.  The distribution of  values for Epoch 2 has a longer upper tail than 

that for Epoch 1.  This suggests that when the lower troposphere is dry, it is much drier in 

Epoch 2 than in Epoch 1. 

850
dDT
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Figure 4.3 Antarctic Oscillation:  (a) pressure anomaly when the first EOF of sea level pressure is 
positive, (b) time series of the first EOF.  (Source: Peter Whetton, CSIRO Atmospheric Research.) 
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Figure 4.4 Mean-difference plots and smoothed density estimates of centred, NHMM atmospheric 
predictor series for the periods 1958–76 (Epoch 1) versus 1977–98 (Epoch 2).  In each density plot the 

density estimates for 1977-1998 are shown as dotted curves. 

4.4.3 Sensitivity Analysis 

Results from the sensitivity analysis are given in Figure 4.5.  The probability residuals for a 

particular weather state are defined herein as the difference between the ‘observed’ steady 

state probabilities for each year in the 1979-1998 period and the mean of the 1000 simulated 

probabilities for each year.  The raindays residuals are defined as the difference between the 

observed mean values of the number of raindays at each site for 1979-1998 and their 

simulated means.  The rainfall residuals are defined as the difference between the observed 

mean values of rainfall amounts at each site for 1979-1998 and their simulated means.  

Perusal of Figure 4.5 indicates that post-1978 changes in any one of the three predictors alone 

cannot explain the decline in the frequency of State 3 nor the number of rain days over SWA 

(Figures 4.5a and 4.5c).  In contrast, the increase in the frequency of State 5 can be explained 

by changes in any one of the three predictors (Figure 4.5b).  The results for mean winter 
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precipitation (Figure 4.5d) are not informative given that the NHMM simulations based on 

the 1979-98 Reanalysis data are slightly biased.  Nevertheless, it is apparent that the changes 

in weather state frequency and precipitation across SWA are due to changes in a combination 

of atmospheric predictors rather than a single predictor. 
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Figure 4.5 Box plots of results from sensitivity analysis: (a) and (b) show differences between 
observed and mean simulated weather state probabilities, (c) shows differences between mean observed 
rain days and mean simulated rain days for all 30 sites, and (d) shows the relative percentage error in 
mean simulated precipitation across the 30 sites.  P1, P4 and P26 denote results for transformed mean 

MSLP, north-south MSLP gradient and  respectively, and 79-98 denotes results when the post-
1978 data for all predictors are used to drive the modified NHMM. 

,dDT 850

4.5 Discussion 

Other workers have investigated the causes of the low precipitation sequence over SWA.  

Allan and Haylock (1993) found that wet and dry periods over most of the region are 

associated with enhanced and weaker mean westerly airflow, respectively.  Smith et al. 

(1999) noted an increase in winter MSLPs over SWA since the late 1960s and a decrease in 

cyclonic activity immediately south of WA over the same period.  Our results are consistent 

with these earlier findings in that comparing the last twenty years (Epoch 2) with the previous 

twenty years (Epoch 1): 
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• Winter MSLP for Epoch 2 is equal to that for Epoch 1 plus an additive shift of 0.6 hPa 

(Figure 4.4). 

• There has been a significant reduction in the number of days when precipitation is 

generated by westerly airflow (Figures 3.1a and 4.2). 

• There has been a significant increase in anticyclone activity (Figures 3.1b and 4.2). 

Tapp and Cramb (2000) have speculated that changes in atmospheric circulation that are not 

well reflected by changes in MSLP may also affect regional precipitation.  We have found 

that when the lower troposphere has been dry in Epoch 2, there is a tendency for it to have 

been drier than in Epoch 1 (Figure 4.4).  We have also demonstrated that the low 

precipitation sequence is due to a combination of changes in sea level pressure and low-level 

humidity variables rather than a single pressure variable alone (Figure 4.5). 

4.6 Conclusions 

Our results indicate that: 

• There is strong to very strong evidence of changes in the synoptic patterns over SWA 

during the last 40 years. 

• There are marked reductions in the incidence of precipitation generated by moist 

westerly and south-west winds, and the number of rain days due to an increase in the 

frequency of high pressure systems centred to the east of SWA. 

• The changes in weather state frequency, and hence precipitation occurrence and amount, 

are due to a combination of changes in several atmospheric variables (mean MSLP, 

north-south MSLP gradient and  rather than any one predictor. )dDT 850

We have speculated that the large-scale mechanisms responsible for the low precipitation 

sequence may be changes in, and a possible interaction between, the behaviour of El Niño 

and the Antarctic Oscillation over the period covered by the Reanalysis dataset.  This 

hypothesis should be subjected to detailed meteorological analysis. 
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5. LOW FREQUENCY CLIMATE VARIABILITY 

5.1 Introduction 

Previous work by CSIRO Atmospheric Research (IOCI, 1999) has indicated that the 

observed low precipitation sequence for SWA is unusual in a historical and global context.  

In this section, we attempt to place the observed sequence in a regional context by applying 

the NHMM to the daily atmospheric fields produced by the 1000-year, CSIRO Mk 2 coupled 

GCM run.  This approach produces a daily precipitation sequence of length 1000 years for 

each of the 30 sites in SWA (Figure 2.1 and Table 2.1). 

Consider the 40-year period from 1958 to 1997.  One way of characterising the recent 

precipitation decline over SWA is to compute the difference between the mean precipitation 

across all 30 sites for the period 1958 to 1977 and the mean precipitation across all 30 sites 

for 1978 to 1997.  This difference will hereafter be referred to as the observed mean 

difference.  We estimate the probability of a mean difference that is at least as severe as the 

observed as follows: 

• For each of the 961 periods of length 40 years in the 1000-year GCM run, compute a 

simulated mean difference by subtracting the mean precipitation for the last 20 years 

across all 30 sites from the mean precipitation for the first twenty years. 

• Collate and sort the 961 simulated mean differences. 

• Compare the observed mean difference to the empirical quantiles of the distribution of 

the simulated mean differences. 

5.2 Results and Discussion 

Figure 5.1 compares the distribution of simulated mean differences with the observed mean 

difference (27.2 mm).  About 9.5% of the simulated mean differences are greater than the 

observed mean difference, indicating that the observed low precipitation sequence is 

uncommon but not extreme. 

However, the above finding is subject to three caveats: 
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• It assumes that the 1000-year GCM run produces a credible simulation of low-frequency 

changes in atmospheric circulation over SWA. 

• It assumes that the parameters of the NHMM are stationary over the length of the GCM 

simulation. 

• The GCM simulation is not a reconstruction of climate variability over the last 1000 

years, as temporal variations in solar forcing, volcanism and the atmospheric 

concentration of carbon dioxide over that period have not been accounted for.  That is, the 

simulation is a scenario derived for present day conditions only. 
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Figure 5.1 Comparison of the observed mean difference and simulated mean differences. 
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6. CONCLUSIONS 

6.1 Summary of the Investigation 

Our investigations for Second Research Phase of the Indian Ocean Climate Initiative (IOCI) 

have focused on: 

• Split-sample testing of an extended nonhomogeneous hidden Markov model (NHMM) 

for daily winter (May to October) precipitation across a network of 30 stations scattered 

throughout southwest Western Australia (SWA). 

• Using the NHMM and observed atmospheric fields to discern the causes of the low 

precipitation sequence in SWA at the synoptic scale. 

• Deriving an estimate of the probability of the observed low precipitation sequence over 

the last two decades. 

Our main findings are as follows: 

• Initial testing revealed that the NHMM did not capture the dynamic behaviour of the 

atmosphere at intra-seasonal time scales.  A modified version of the NHMM 

incorporating an augmented atmospheric predictor set was shown to resolve most of the 

performance deficiencies of the original model.  This suggests that provided coupled 

ocean-atmosphere GCMs could provide reasonable interseasonal forecasts of the large-

scale atmospheric circulation over SWA, reasonably reliable forecasts of monthly 

precipitation at sites across the region can be obtained. 

• A sudden change in spatial precipitation occurrence patterns occurred in the mid 70s.  

Changes in the location and strength of depressions and anticyclones, and the moisture 

content of the lower troposphere, are evident. 

• The low precipitation sequence over the last 20 years is due to changes in a combination 

of several atmospheric variables rather than a change in any one variable. 

• Within the winter half-year, the number of days when the entire southwest is essentially 

dry is larger than in the past due to the increase in the number of days when anticyclones 
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are centred to the east of the region.  This may be due to the change in the behaviour of 

El Niño that occurred around 1976.  

• There has been a reduction in the frequency of precipitation in coastal regions due to a 

reduction in westerly airflow.  There is a declining trend in the frequency of this 

precipitation pattern from 1958 to the mid-70s, with some evidence of oscillations about 

the trend.  The trend has been absent for the period from the mid-70s to present.  This 

may be due changes in the Antarctic Oscillation and an interaction between the 

Oscillation and El Niño.  

• In a regional context, the low precipitation sequence over the last 20 years is uncommon 

but not extreme. 

6.2 Future Research 

Our proposed research plan for Phase 5 of IOCI is as follows: 

• Downscaling of a sequence of staged, interseasonal climate forecasts using CAR’s 

coupled ocean-atmosphere GCM, and comparison of downscaled precipitation with 

observations.  This work will reveal the lead time for reliable forecasts (if any), and any 

so-called ‘predictability barriers’ during the winter half-year. 

• Further investigation of the effects of El Niño and the Antarctic Oscillation on winter 

precipitation over SWA. 

• Development of an air temperature module for the NHMM.  This module will simulate 

minimum daily temperature and temperature range (maximum minus minimum daily 

temperature). 

Our proposed research linkages for Phase 5 are: 

• CSIRO Atmospheric Research – deriving interseasonal forecasts of monthly precipitation 

over SWA by downscaling a staged sequence of coupled CSIRO Mark 3 GCM 

simulations, and obtaining further insight into the relationships between key atmospheric 

predictors and large-scale forcing mechanisms. 
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• Bureau of Meteorology (Research Centre and Perth Regional Office) – collaboration on 

the final synthesis report for policy makers. 

• University of Washington, Seattle – consultation on strategic issues related to further 

development of the NHMM. 

• CSIRO Mathematical and Information Sciences – advice on advanced statistical issues 

and obtaining further insight into the relationships between key atmospheric predictors 

and large-scale forcing mechanisms. 
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APPENDIX A - GLOSSARY 

General circulation The global-scale wind system that largely determines the broad 
climate patterns on Earth. 

Dew point temperature Temperature to which air needs to be cooled for condensation to 
occur at a given atmospheric pressure and mixing ratio. 

Downscaling  Quantification of the relation of local- and regional-scale climate 
variables to larger scale atmospheric patterns.  These patterns 
may be observed or simulated by dynamical climate models. 

Dry spell A sequence of consecutive days during which daily precipitation 
remains below 0.3 mm. 

Front The transition zone or interface between two air masses of 
contrasting wind, temperature and density. 

Geopotential height The work that must be done against gravity to raise a mass of 
1 kg from sea-level to the level of interest in the atmosphere. 

Markov process A stochastic process in which the 'future' is determined by the 
'present' and is independent of the 'past'. 

Mean Sea Level Pressure Total atmospheric pressure at the average height of the sea for all 
tidal stages over a 19-year period. 

Mixing ratio Ratio of the mass of water vapour to the mass of dry air in a 
given volume of air. 

Precipitation Any and all forms of water that falls from clouds and reaches the 
earth's surface. 

Quantile The value of a variable below which a certain proportion of the 
variable values will fall. 

Wet spell A sequence of consecutive days during which daily precipitation 
equals or exceeds 0.3 mm. 
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APPENDIX B - LIST OF ACRONYMS 

BIC Bayesian information criterion.  

CAR CSIRO Atmospheric Research  

CCA Canonical correlation analysis 

CLW CSIRO Land and Water. 

EOF Empirical orthogonal function 

GCM General circulation model. 

GMT Greenwich Mean Time: the 24-hour time scale used throughout the scientific 
and military communities.  Other names for this time measurement are 
Universal Time Coordinate (UTC) and Zulu (Z). 

CSIRO9 Spectral 9-level general circulation model developed by CSIRO Atmospheric 
Research. 

IOCI Indian Ocean Climate Initiative. 

MSLP Mean sea level pressure. 

NCAR National Center for Atmospheric Research. 

NCEP National Centers for Climate Prediction. 

NHMM Nonhomogeneous hidden Markov model 

SLP Sea level pressure 

SST Sea surface temperature. 

SWA Southwest Western Australia. 
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