
Attachment 3

Indian Ocean Climate Initiative Stage 2:

Unabridged Reports of Phase 1 Theme 3
Activity

July 2003 – Dec 2004

December 2004



2

Contents

Project 3.1: Improved procedures for selecting atmospheric predictors for statistical downscaling
schemes................................................................................................................................ 3

Project 3.2: Improved rainfall amount simulations generated by the statistical downscaling model... 3
Project 3.3: Processed atmospheric fields from hindcasts produced by CAR and IRI for Climate

Prediction (USA)................................................................................................................. 6
Project 3.4: Analysis of synoptic events that lead to rainfall extremes. .............................................. 13
Project 4.1: Development of a hybrid model of factors influencing SWWA rainfall......................... 15
Project 4.2: Customised nonlinear data mining tools........................................................................... 23



3

Project 3.1: Improved procedures for selecting atmospheric predictors for
statistical downscaling schemes.

This project aims to improve the statistical downscaling results by looking for better links between the
large scale atmospheric fields and daily rainfall at the point scale.

Selecting predictors in statistical procedures in general requires that the model fit be compared with
and without each predictor. If there are many potential predictors then this can be computationally
intensive, particularly in complex models. Therefore selection procedures for downscaling used to
date are ad hoc and rely heavily on professional judgement. Thus two different users of the
downscaling model could well yield different results. In addition, some features are hard to capture
unless predictor selection is data-driven, such as northwest cloud band activity and interaction with
frontal systems. More automatic, data-driven predictor selection techniques are required.

A variety of formal and informal approaches are currently being used for predictor selection, given the
very large number of potential predictors in any application. A method known as boosting, drawn
from the machine learning literature, has been used with some success in IOCI-sponsored work to
investigate rainfall regime changes in southwest WA. Boosting has not been applied to statistical
downscaling (SD) before, and requires an extension so that multiple rainfall stations can be used
simultaneously to select optimal predictors. The technical requirements of the enhanced procedure
have been identified and broken down into research tasks that are currently being implemented. 
The predictors selected by these boosting methods will be compared to those previously selected for
the SWWA SD models. This will include re-fitting the SD models using any new predictor
combinations and assessing their performance. 

Collaboration with Sergey Schreider, University of California, Irvine (UCI) and Andrew Robertson,
International Research Institute for Climate Prediction (IRI), is also leading to new methodologies for
selecting combinations of atmospheric predictors. UCI and IRI are developing machine learning
algorithms and have commenced applying them to Australian datasets. 

Additionally, IOCI is benefiting from research undertaken as part of a GRDC funded project “Climate
change, wheat yield and cropping risks in Western Australia” that has investigated a larger number of
candidate predictors from the NCEP/NCAR Reanalysis data set for three geographic sub-regions
covering the wheatbelt of SWWA. This has led to better performing SD models with new predictor
sets tuned to the sub-regions. Previously dew-point temperature depression (DTD) at the 850 hPa
level was used as a predictor in the SWWA SD model, whereas the new SD models perform better
when using DTD from the 700 hPa level. This could indicate that moisture at the 700 hPa level better
represents north-west cloudbands, for example.

Project 3.2: Improved rainfall amount simulations generated by the statistical
downscaling model. 
This project aims to develop techniques which can improve the rainfall amount simulations.

Previous investigations (statistically downscaling CAR Mk2 seasonal forecasts for the late 1990s and
early 2000s) found there was some predictability associated with the probability of winter (May-
October) rainfall occurrence but little associated with rainfall amount. Improved methodologies for
generating simulations of multi-site, daily rainfall amounts conditional on atmospheric predictors
have been developed and tested. In addition, a modified algorithm for resampling the daily rainfall
amounts has also been developed and tested. This uses the gamma distribution, whereas the previous
rainfall amounts model used the empirical distribution of the fitting data. Performance comparison has
thus been undertaken for three versions of the rainfall amount module:

i. empirical distribution conditional on rainfall occurrence at neighbouring stations
only (the original model);
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ii. empirical distribution conditional on rainfall occurrence at neighbouring stations
and atmospheric predictors (the extended model);

iii. gamma distribution conditional on rainfall occurrence at neighbouring stations
and atmospheric predictors (the further extended model). 

Although improvement in performance is not consistent across all stations, in many cases better
reproduction of inter annual variability and daily probability density functions is evident for the
model version using the gamma distribution. An example plot is shown (Figure 3.1). Note this
assessment is for simulations driven with observed atmospheric predictors. This assessment has
not been undertaken for seasonal forecasts due to the current limitations of the COCA2 hindcasts
as outlined in P3.3 below. 
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Figure 3.1. Daily rainfall amount reproduction for validation period using the three
versions of the rainfall amount module (i to iii, left to right) for Kellerberrin (A to C) and
Merredin (D to F).

Also, in collaboration with IRI and UCI, a modification to the current SD amounts methodology is
being tested. This involves a version of the NHMM SD model that uses a mixture model, consisting
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of a delta function (essentially a spike function) to model dry days (zero rainfall) and a mixture of
exponentials to describe rainfall amounts on wet days. The model code has been obtained and testing
on SWWA data is on-going. 

Project 3.3: Processed atmospheric fields from hindcasts produced by CAR
and IRI for Climate Prediction (USA).
This project aims to demonstrate the potential skill of dynamical seasonal forecasting schemes by
downscaling the simulated atmospheric fields.

A hindcast is a retrospective forecast by a model based on a priori information. If it is applied to
independent data, the model skill is a true measure of forecast skill. 

  The CSIRO seasonal prediction model is based on the CSIRO Mk3 coupled climate model and is
referred to as COCA2. This model superseded the previous seasonal prediction COCA1 which was
based on the CSIRO Mk2 climate model. COCA2 has been used to produce seasonal hindcasts for the
1980-2003 period as part of the CSIRO Water for a Healthy Country Flagship.  The hindcasts data set
begins in 1980 since, prior to this time, both observed SSTs and observed winds, which are required
to initialize the prediction model, are regarded as less reliable. For each year, the model was initialized
at 4 specific dates -January 1, April 1, July 1 and October 1 - and each time run forward for 12
months. This resulted in 24 separate 12-month predictions for January to December, April to March,
July to June and October to September - in all, a total of 96 individual predictions. A 6-month lead
prediction refers to the result for June from a January 1 start, the result for August from an April 1
start etc. (In practice, real-time predictions from the 1st of each month can only be completed mid-way
through the month because of the delay in accessing the observational data and the time required to
run the model. Technically speaking, real-time lead times will be one month less than those referred to
here).  

Here we report on the results of an analysis into the feasibility of predicting seasonal rainfall for
SWWA region. In the first section we analyse the hindcast results involving monthly mean rainfall,
mean sea level pressure (MSLP) and Southern Oscillation Index (SOI). In the second section, we
consider statistical downscaling using a nonhomogeneous hidden Markov model which has been
shown to be successful at reproducing the characteristics of multi-site, daily gauge precipitation
(Charles et al., 2004)

Monthly mean results.
We begin by analysing the results of the April 1 hindcasts since these offer the possibility of winter
rainfall predictions. We can refer to these as 3.5-month lead time hindcasts since this describes the
time interval between the date of the hindcast and the mid-point of the target period (JJA).

Figure 3.2  compares the observed winter (JJA) rainfall totals over the SWWA region (see IOCI,
2002) with those hindcasted by COCA2 over a box area covering most of this region (116o to 188oE,
35o to 32oS). Also shown are the NCEP rainfall totals for the same box area. The COCA2 values
underestimate the observations by about a factor of 2 while the NCEP values underestimate the
observations by about a factor of 3. This is partly the result of averaging over slightly different regions
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but is mainly due to the relatively coarse resolution of the COCA2 and NCEP models. It has been
shown that the use of finer horizontal resolution provides a better representation of topography which
contributes to higher rainfall amounts. Despite this bias, and the (partly related) reduced variability,
the NCEP values are highly correlated (r =+0.88) over the 24-year period. It should be remembered
that, while the NCEP values are model generated values, they are driven by daily observations of
pressure, winds, moisture etc. and so are expected to closely represent the observations. In the case of
the COCA2 values, the only drivers are predicted SST values and the correlation with the
observations is only +0.19 indicating that, for this region at this time of year, there is essentially no
predictability associated with the model rainfall values at a 3.5-month lead time.
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Figure 3.2: SWWA rainfall for winter (June to August) from observations, as hindcasted
from COCA2 April 1 starts and from NCEP reanalysis data. The observed values are based
on the Bureau of Meteorology 0.25o gridded data set averaged over the region as defined in
IOCI (2002). The COCA2 and NCEP values are box-average values over the region 35oS to
32oS and 116oE to 118oE.

Previous studies have documented the strong inverse relationship between Perth mean sea level
pressure (MSLP) and SWWA winter rainfall (Allan and Haylock, 1993; Smith et al. 2000; IOCIP
2002). In addition, statistical downscaling of large scale atmospheric fields also identified the north-
south MSLP gradient and dew-point temperature depression at 850hPa as important factors which
affect point-scale daily rainfall (Charles et. al, 2004). Charles et al. (2004) found that COCA1
statistically downscaled seasonal forecasts showed some predictability associated with the probability
of rainfall occurrence, but little associated with rainfall amount. An alternative assessment of potential
predictability is to focus on the skill of COCA2 in simulating mean winter MSLP over SWWA from
the April 1 start dates. Figure 3.3. compares the observed and hindcasted JJA MSLP time series over
the period 1980 to 2003. Apart from a bias of about +4 hPa, the COCA2 values show very little skill
since the correlation coefficient between the two series is only -0.19. This in turn implies that little
predictability would be associated with downscaling of the COCA2 MSLP fields over SWWA. This
is confirmed by the fact that the COCA2 MSLP values are positively, rather than negatively,
correlated (r=+0.20) with the observed rainfall (see Table 3.1).
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Figure 3.3: Mean sea level pressure (MSLP) for winter (June to August) from observations and
as hindcasted from COCA2 April 1 starts.

Table 3.1: Correlations of various predictors with observed winter rainfall.

Observed winter (Jun-Aug) rainfall 
Index (1980-2003) (1948-2003)
NCEP rainfall +0.88 +0.63
NCEP MSLP -0.80 -0.82
NCEP RH850 +0.21 +0.40
SOI (obs) +0.43 +0.34
COCA2 rainfall +0.19
COCA2 MSLP +0.20
COCA2 SOI -0.13

Observed late winter (Jul-Oct) rainfall 
Index (1980-2003) (1948-2003)
NCEP rainfall +0.75 +0.59
NCEP MSLP -0.80 -0.78
NCEP RH850 +0.16 +0.41
SOI (obs) +0.39 +0.56
COCA2 rainfall +0.18
COCA2 MSLP -0.14
COCA2 SOI +0.35

While there is little evidence of predictability associated with the April 1 start dates, it could be
expected that predictions beginning on July 1 might be more skilful, if only because they begin
outside the autumn period which corresponds to the ENSO predictability barrier.  Table 3.1 also
shows the results from an analysis of the July 1 start date results for the late winter target season July
to October. While the relationship between rainfall and the NCEP-derived time series is similar to
before, the COCA2 rainfall predictions for late winter exhibit a similarly low correlation (r=+0.18) as
for peak winter. However, there is some improvement in the correlations between MSLP and rainfall
(r =-0.14 compared to +0.20) and between the model SOI and rainfall (r=+0.35 compared to -0.13). 
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Figure 3.4 compares observed rainfall anomalies with those derived from the model SOI values. This
degree of correlation is comparable with that between the observed SOI and rainfall (+0.39, Table 1).
Over the longer period 1948 to 2003, the observed SOI correlates much more strongly (+0.56) with
the rainfall. This raises the possibility that the model SOI and rainfall relationship may also be
stronger in the long term and that the 1980-2003 period may have been a relatively difficult period for
predictions. 

Figure 3.4: July to October rainfall anomalies from observations and as derived from the
hindcasted SOI values from the July 1 start dates.

Downscaling of daily data
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The statistical downscaling (SD) technique (see 3.1 and 3.2) , involves taking hindcast daily
atmospheric variables data to produce hindcast daily, multi site rainfall series for the 30 stations across
SWWA. MSLP is one of the SD model predictors and, as shown above, the COCA2 reproduction of
winter MSLP variability over the region is poor. This is confirmed when comparing the MSLP from
NCEP (i.e. observed), COCA2 and the previous generation COCA1 data (Figure 3.5 and Figure 3.6). 

Figure 3.5: May to October MSLP over SWWA for the region used as a predictor for
statistical downscaling model

Figure 3.6: May to October centred MSLP over SWWA, as used in the statistical
downscaling model
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The COCA2 data appear less skilful than COCA1and, not surprisingly, the SD rainfall series obtained
from driving the COCA2 hindcasts is correspondingly poor (Figure 3.7). However, this observation
relates only to a sample of 7 years (1996 to 2002) and is possible that there is no real difference
between the two models. Certainly we would expect the more recent version of the climate model
(Mk3) with 18 levels in the vertical to perform better than the older version (Mk2) with only 9 levels.
Experiments with the even higher resolution climate model CCAM (see Section 2.3) indicate that
increased horizontal resolution can improve the mean winter rainfall over SWWA. However, they
also indicate that SSTs alone are insufficient to reproduce interannual variability and that some
knowledge of the changes to the large scale circulation (via the observed upper level winds) can
dramatically improve the CCAM simulation of winter rainfall variability. Downscaling of the output
from this type of experiment is expected to yield results consistent with those obtained using the raw
NCEP data.

 

Figure 3.7: May to October observed and COCA2 statistically downscaled rainfall averaged
over the 30 SWWA stations.

In summary the COCA2 hindcasts have revealed little skill for SWWA.  However, these results are
very premature.  It is not clear whether the deficiencies result from inadequacies in the model or
inadequacies in the SST and wind stress forcing.  Furthermore, these results refer to the skill of just a
single seasonal prediction model and it remains unclear as to how other models may perform.
Consequently, it is planned to analyse the existing hindcast data sets from several other models. The
DEMETER set comprises the results from several European seasonal prediction models and is
available for analysis. It has been decided that accessing this data set may be more efficient than
accessing the IRI data set.
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Project 3.4: Analysis of synoptic events that lead to rainfall extremes.
This project aims to seek greater capacity to develop outlooks for extreme events

This project is work carried out under the CSIRO Water for a Healthy Country Flagship Program and
may be of interest to State partners.  It is arguable that the greatest potential impacts on the Australian
environment, economy and society will be felt through changes in extreme weather events.  The
development of mitigation and adaptation strategies requires an understanding of potential impacts at
relatively fine scales in the landscape. We also seek greater capacity to develop outlooks for extreme
events.

This work is a first step in building models for predicting rainfall extremes in space and time,
particularly under enhanced greenhouse effect scenarios. An extensive data audit has been completed
to provide a relatively clean data set. The initial study region is focused on the Avon catchment,
shown in Figure 3.8 below. 

Figure 3.8: Study region, with rainfall measurement stations shown as red dots.

Methods from the statistical modelling of extreme events have been used to calculate thresholds
beyond which a rainfall event is considered to be extreme; these thresholds have been mapped in
Figure 3.9. A clear trend in rainfall is present, with north-west to south-east bands present. It would
therefore be sub-optimal to make predictions station-by-station. Instead we have focused on building
models for the spatial patterns, which are allowed to vary through time. 

Figure 3.9: Thresholds defining extreme winter rainfall events, mapped across the Avon
catchment.
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A proto-type model has been developed that incorporates spatial relationships between rainfall
stations, and this model has been used to explore trends in winter and summer maxima in the period
1950 to 2003. The modelling has allowed the team to take ‘time slices’ through the spatial patterns,
and a set of these are shown below (Figure 3.10) for 1950, 1975 and 2000. 

Figure 3.10: Time slices through the Avon catchment using the prototype spatial model for
winter rainfall return periods.

The left-most column is for a return period of 5 years, and we see an increase in extreme rainfall to the
west and north of the region, and a decrease to the south. This should be treated with caution however
as this is beyond the domain of the rainfall stations. To the south-east there appears to have been a
mild decrease. For a return period of 25 years we see a similar increase to the north, and a mild
decrease to the south-east. An interesting feature is an expanding strip of increased extreme rainfall to



the northwest. There is a reasonable case for believing that this might be due to interactions with
northwest cloud bands. There does therefore appear to be evidence for an increase already in rainfall
extremes to the north, but perhaps with a more recent decline to the south. There is a statistically
significant link to the Antarctic Oscillation, but more detailed work is required to determine the nature
of this.  The extreme events will next be explored for evidence of common synoptic patterns.

Project 4.1: Development of a hybrid model of factors influencing SWWA
rainfall.
This project investigates methodologies to essentially couple together physical and statistical models
to provide more effective forecasts

The coupling may range from driving a statistical model using physical predictors, to a fully
integrated physical-statistical model. A key attractive feature of this approach to modelling is that
uncertainty is fundamental, and forecasts are naturally derived as probability distributions. A
challenge is that the development of these models is truly multi-disciplinary, but to date an ENSO
forecasting scheme has been published, as well as some other geophysical applications.

There are two main approaches to seasonal forecasting in the literature. Perhaps the most common
approach uses observations of the climate system as potential predictors of future climate in a
statistical model. Predictors derived from physical considerations are sometimes incorporated.
Another common approach is to use regional climate model, using observation to drive the model.
Each approach has advantages and disadvantages. Statistical forecasting schemes are especially strong
in their handling of uncertainty, whilst physical models provide a means to understand and accurately
predict nonlinear behaviour.

We are investigating an entirely new approach in which a statistical model for the observations is
coupled with one or more physical models. This is depicted in Figure 3.11 below.

Figure 3.11: A schem
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In addition to the most general class of hybrid model, we have also investigated models we term
‘feed-forward’. In so-called feed-forward models a statistical model for rainfall receives inputs from
observations and climate models to produce forecasts. This allows both ‘now’ and lagged variables to
be incorporated into the forecast model, with ‘now’ variables supplied by a climate model. A
schematic of a feed-forward model is shown in Figure 3.12 below.

Statistical
Model

Forecast

Observations
Physical      

Predictors

Physical
Model

Figure 3.12:  Schematic of a feed-forward hybrid physical-statistical forecasting scheme.

The most general class are may be termed ‘feed-back’ models, where the physical model is essentially
calibrated against the available data using feedback from a statistical model for the observations. The
forecasts produced integrate both physical and statistical elements.

Some results for feed-forward hybrid models
In general, coarse-scale climate models tend to underestimate rainfall amount and variability which
can affect the reliability of any simulated changes – be they due to interannual variability or climate
change. Statistical techniques can improve this situation, particularly when it can be shown that
rainfall is strongly dependent on atmospheric variables such as MSLP, relative humidity, winds etc.
For example, the SD approach (using the nonhomogeneous hidden Markov model) has been shown to
be successful at reproducing the characteristics of multi-site, daily gauge precipitation over SWWA
during winter (Charles et al., 2004). In these situations, model values for these variables can be used
to derive rainfall estimates which are superior to the raw model rainfall estimates themselves. 

The question we address here is whether feed-forward models using monthly mean variables can be
used to improve rainfall estimates on the large scale. We focus on the use of monthly mean variables
from both the NCEP reanalysis data and also the CCAM output from the run in which it is forced by
observed upper level winds. Statistical regression models are firstly developed using the NCEP
atmospheric data and the observed rainfall data from the training period 1948 to 1988. The models are
then validated using data from the independent period 1989 to 2000.

Identifying important predictors
We began by considering the following variables as potential descriptors of SWWA JJA rainfall (R):
mean sea level pressure (MSLP), precipitable water (PW), 850mb pressure level relative humidity
(RH), 850mb pressure level specific humidity (SH), surface zonal wind (U), 200mb pressure level
zonal wind (U200) and surface meridional  wind (V). All values were calculated as seasonal means
over the SWWA region. In addition, we also considered the Antarctic oscillation index (AOI) which
is a measure of the MSLP gradient between mid- and high- latitudes. We then applied a statistical
technique described by Friedman (2001) to select the most important variables. The ranking (in order
of importance) of these variables is shown in Figure 3.13. The four most influential variables are,
MSLP, RH, U200 and U. The percentages refer to the relative importance of each variable and it can
be seen that MSLP (73%) dominates followed by RH (15%). There is effectively no significant
relationship between rainfall and other variables on the seasonal time scale. 
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Figure 3.13:  Relative influence of 8 atmospheric variables to SWWA JJA rainfall. In order
of relative importance: mean sea level pressure (MSLP, 73%), relative humidity (RH,
15%), 200mb pressure level zonal wind (U200, 3%), surface zonal wind (U, 3%), surface
meridional wind (V, 2%), 850 mb specific humidity SH (1%), Antarctic Oscillation Index
AOI (1%), and precipitable water PW (1%). 

The relationship between rainfall and both MSLP and RH is demonstrated by the scatter plots in
Figure 3.14 and includes simple fits to the data using either simple linear regression or nonparametric
piece-wise linear regression.
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Figure 3.14: Scatter plot of SWWA JJA rainfall and atmospheric variables: (a) MSLP
(1948 to 1988)  and (b) RH (1948 to 1988). The blue lines represent a simple linear fit to the
data, the red lines represent a non-linear fit to the data.

a b



18

The statistical models
While it is apparent that MSLP and RH are the two most important variables, we nevertheless use
multiple linear regression to derive a statistical model that also includes the next two most important
variables (U200 and U). The resultant model based on the training period is

R 34630 33.66 MSLP 0.071 RH 5.22 U 0.8475 U200t t t t t= − − − +

In addition, we also derive a non-linear model using the technique described by Friedman (1991). The
resultant model is

[ ] [ ]
( ) [ ]

R 326.72 30.74 MSLP 1019.6 4.43 RH 61.58

        + 2.126 MSLP 1019.6 U200 34.55
t t t

t t

+ +

++

= − − + −

− − −  

where [ ] max(0, )
+
=  and is a technique for handling threshold values, either side of which

relationships between observed rainfall and predictors of rainfall can change.

In addition to applying the linear and non-linear models to the NCEP atmospheric variables, we have
also applied them to the same variables as output by the CCAM model. In this case we have used the
output from the CCAM experiment in which the upper level winds were nudged towards observations
(see Section 2.3). This was shown to result in a good representation by CCAM of the observed
rainfall and it could be expected that the associated atmospheric variables as simulated by CCAM
would be similarly related to the rainfall as are the NCEP data. Figure 3.15 illustrates the relationship
between the various data sets investigated in this section. In all, there are 7 time series to compare
comprising the NCEP raw rainfall, the CCAM raw rainfall, the statistically derived rainfall derived
from both the NCEP and CCAM atmospheric data using either the linear (LM) or non-linear (NLM)
models, and finally the observed rainfall.

Figure 3.15. Sources of the seven rainfall time series analysed in this section (see text).
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Figure 3.16 compares the seven rainfall time series over the training period 1948 to 1988. Again, the
NCEP raw rainfall represents a serious underestimate but is highly correlated with the observations.
The CCAM rainfall represents only a slight underestimate but is also highly correlated. The
statistically derived rainfall time series, either linear or non-linear, all provide close fits to the
observations.
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Figure 3.16: Time series of SWWA JJA rainfall over the training period 1948 to 1988 as
observed (OBS), according to the NCEP and CCAM models, and as statistically derived from
linear (LM) and non-linear (NLM) models using the NCEP and CCAM output atmospheric
variables. 

Figure 3.17 compares the seven rainfall time series over the validation period 1989 to 2000. Here we
see a similar pattern, with the statistically derived time series all providing much improved fits to the
observations compared to the raw NCEP or raw CCAM rainfall. This result suggests that the
statistical models are robust and that the level of skill is evident over the training period is not
artificial.
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Figure 3.17: As for Figure 3.16except for the validation period 1989 to 2000.
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The degree of improvement afforded by the statistically derived rainfall over the raw product is
demonstrated by Figure 3.18. It represents a measure of skill by plotting the correlation coefficient
versus the root mean square error. Optimum skill corresponds to points which fall to the top left-hand
corner of the graph, and vice-versa. The insert records the individual values for both RMSE and r. 

http://www.ioci.org.au/publications/pdf/IOCI_TechnicalReport02.pdf
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Figure 3.18:  Skill associated with the various rainfall time series over the validation period
1989 to 2000. The arrows indicate the improvement in skill achieved by going from the raw
(model) rainfall outputs to the statistically derived rainfall.

It can be seen that the raw NCEP rainfall product suffers from an RMSE of 210 mm representing the
magnitude of the underestimate, but is still highly correlated (r=+0.87). The statistically derived
rainfall products using NCEP outputs are characterized by much smaller RMSE values yet higher
correlation values. The same pattern is seen when comparing the raw CCAM and statistically derived
products using CCAM outputs. The arrows indicate the improvement in skill in going from the raw to
the statistically derived products. The RMSE values lie between 20 and 40 mm while the correlation
values are close to +0.93. In both cases, there is little to distinguish between the final products or the
type of statistical approach adopted. If anything, the non-linear method appears to yield slightly lower
RMSE values. 

In summary, we have used both multiple linear and a simplified multivariate regression spline
techniques to describe the relationship between the observed SWWA JJA rainfall and atmospheric
variables – the most important being MSLP and RH. These were tested by partitioning the data sets
into a training period 1948 to 1988 and an independent validation period 1989 to 2000. There is little
to distinguish between the two techniques except that the non-linear technique may yield slightly
lower RMSE values. Both techniques yield rainfall estimates which are superior to the raw NCEP and
CCAM products. On this basis, it appears that winter rainfall for SWWA can be better estimated by
using MSLP and RH within a simple statistical model rather than relying on the raw rainfall values
generated by climate models. This result further confirms the application of statistical techniques
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(including the statistical downscaling technique described in Section 2.2) as a means of better
interpreting the results of climate change simulations. It also indicates that skilful rainfall predictions
can be achieved by skilfully predicting MSLP and RH changes. Whether these are possible is still
unclear. 

Some results for feed-back hybrid models
Feed-back hybrid models are quite different. Rather than having a physical climate model supply
‘data’ to a statistical rainfall model, the physical and statistical models interact. Two types of model
are therefore required: (1) statistical model for the observations to be used and (2) a physical model
(conceptual or more detailed) of the physical processes involved. Note that to forecast rainfall we
don’t require a physical model of rainfall- the physical model would describe processes known to
influence rainfall. The statistical model would make the link to rainfall data. A limiting factor in
preventing implementation of a feed-back hybrid model has been the relatively poor state of
knowledge of processes influencing SWWA rainfall. Work to date has collected together the available
literature and developed a candidate framework for seasonal forecasting (Campbell, 2004b). The
strength in these methods falls into 3 categories: (1) Constraining statistical forecasts by known
physics; (2) Integrating observations and physics and (3) Direct production of probability distributions
for forecasts and parameters. 

As an example of the probability outputs that are available, consider the conceptual model of Suarez
and Schopf (1988) for the ENSO phenomenon. ENSO may be thought of as a periodic disturbance in
the ocean-atmosphere circulation in the Pacific Ocean. The model incorporates a negative, delayed
feedback mechanism of given amplitude to explain the long time scale of ENSO (typically 2-4 years).
The hybrid model would provide information on the unknown amplitude as a probability distribution,
for example as shown in Figure 3.19. This figure shows the probability distribution for the amplitude
prior-to and posterior-to incorporating available data. It turns out then to be very easy to produce
forecasts as a probability distribution. For more details see Campbell (2004a).
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Figure 3. 19. Boxplots of prior and posterior samples for amplitude. The central box
bounds the lower and upper quartiles, with the median (half-way point) shown as a black
circle. The lines extend to the maximum and minimum values, except for outlying values
which are flagged using clear circles.

Project 4.2: Customised nonlinear data mining tools.
This project seeks to make these tools available in a form suitable for climate applications 

A key concern in climate forecasting is the identification of predictors of future climate, which is
essentially a statistical modelling exercise. There are many widely available approaches to implement
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standard statistical methods. However, climate applications are complicated in that the processes of
interest are often nonlinear, and typically comprise multiple interacting components. There are tools
available in the statistics and machine learning literature to address this problem, but they are not well
known within the climate community. In addition, some tools have been developed as part of IOCI.
This project seeks to make these available in a form suitable for climate applications.

Tools have been developed to incorporate physical thresholds into statistical modelling, and we may
split these into techniques for identifying potential predictors with and without interactions. Methods
that do not use interactions were developed and applied in IOCI Stage I, and these tools will be
available later this year for web download. A range of tools have subsequently been developed and/or
applied for handling interactions, mainly using a technique known as regression splines, and also for
selecting predictors from large sets of candidate predictors. A problem with many existing tools is that
they are hard to use, and really need to be used in combination. For example, it is natural to use
boosting for predictor selection in combination with regression splines for model fitting, so we are
developing a new version which combines both. We are also preparing a new tool that can handle
multiple predictands, such as collections of rainfall stations.
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