
 
 
 
 
 
 
 

An Introduction to Physical-Statistical  
Modelling  

Using Bayesian Methods 
 
 

Technical Report 2004/49 
 

Edward P. Campbell 
CSIRO Mathematical & Information Sciences 

Centre for Environment and Life Sciences 
Private Bag 5, PO Wembley, WA 6913. 

Tel: (08) 9333 6203 
eddy.campbell@csiro.au 

 

March 2004 
 
 
 
 
 
 
© CSIRO Australia 2004 

 1



Abstract 

In this report we discuss the use of Bayesian hierarchical modelling as a tool to integrate 
physical and statistical models in geophysics. We demonstrate Bayes’ theorem as a 
means to learn about physical processes, developing a simple example concerned with 
friction on slopes to illustrate the ideas. Some more complex examples drawn from the 
literature are summarised; we then use these ideas to develop a candidate framework for 
climate forecasting. We also consider methods for fitting physical-statistical models. 

 

Keywords: Bayes’ theorem; hierarchical methods; physical-statistical models; boundary 
values; uncertainty. 

 

 

1 Introduction 
Uncertainty is fundamental to the physical world, from grand physics such as 
Heisenberg’s Uncertainty principle to the simple ubiquity of measurement error in 
observational work. In many cases deterministic rules are sufficient to capture the 
essence of a physical phenomenon. We advocate a framework known as Bayesian 
Hierarchical Modelling (BHM) within which to develop physical-statistical models that 
can incorporate both stochastic and deterministic elements. As we will see, such models 
require both physical and statistical skills if they are to be built. Bayesian methods have a 
long-established placed in geophysical science. For an on-line exploration see 
http://astrosun.tn.cornell.edu/staff/loredo/bayes/ . 

Bayesian methods are used in statistical science to update information on parameters of 
interest in the light of new sources of information. The approach is sometimes termed 
‘Bayesian Learning’ as a result. Fundamental to the modelling philosophy to be followed 
is that models are developed in a hierarchical fashion. That is, whilst we may be 
interested in modelling complex multi-dimensional phenomena, they may be broken 
down using a clear rule into products of simpler conditional phenomena. 

BHM is now finding use in novel geophysical applications. An introduction to the field is 
provided by Berliner (2003). Berliner et al. (2000) used BHM to develop a forecasting 
scheme for Pacific Ocean sea-surface temperatures, incorporate nonlinear behaviour due 
to ocean regimes. An application with more explicit physical modelling is provided by 
Berliner et al. (2003), who handle uncertain boundary values using the approach 
described by Wikle et al. (2003). An excellent review of hierarchical methods in 
environmental science is provided by Wikle (2003) 

All of the examples cited above are characterised by problems that have components 
amenable to physical, or physically inspired, modelling, and some components that are 
distinctly stochastic or subject to uncertainty of some kind. In the next section we will 
explore Bayes’ theorem for learning about physical processes. In section 3 we will 
develop a simple example, and then explore some more complex applications drawn from 
the literature. In section 4 we develop a framework for climate forecasting. Section 5 
considers issues of model-fitting, and identifies a potential way forward (with technical 
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statistical details largely relegated to an appendix). We finish with a discussion and some 
conclusions. 

2 Learning About Physical Processes via Bayes’ 
Theorem 

2.1 Bayes’ Theorem 
There are two major objectives of interest to us: 

i. Calculation of a predictive probability distribution for a physical phenomenon of 
interest, in light of the observed data and process modelling; 

ii. Updated information on a physical process in light of the observed data. 

Bayes’ theorem will be of use to us in this endeavour. Suppose that a physical process is 
denoted by P and we collect data D on this process. Before observing D we can specify 
available knowledge and uncertainty about P via a probability model, denoted P E⎡ ⎤⎣ ⎦

1. 
The only source of information is expert knowledge E. To learn about P we seek to 
calculate ,P D E⎡⎣ ⎤⎦ . That is, the probability model for P updated with new data D, 
additional to the expert knowledge E. Bayes’ theorem from mathematical statistics states: 

[ ]
[ ]

D P P
P D

D
⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦ , 

where we have suppressed dependence on expert knowledge E for ease of exposition. 

For most purposes the normalising factor [ ]D  is not required, and Bayes’ theorem is 
written as: 

 [ ]P D D P P⎡ ⎤ ∝ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (1) 

In words, the posterior model for P given D is proportional to the product of the data 
model (conditional on the process) and the prior process model. This requires us to model 
the data given our process knowledge, and to quantify our prior information. 

An alternative expression of Bayes’ theorem will offer a clue to the hierarchical approach 
to modelling: 

[ ]
[ ]
,P D

D P
P

⎡ ⎤ =⎣ ⎦ , 

where [ ],P D  denotes the joint probability model for the data and the process. The joint 
probability model for the process and the data may therefore be factored as: 

                                                 
1 The [ ] notation used here is a contemporary way of writing “probability of” or “distribution of”, as 
appropriate. 
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[ ] [ ],P D D P P= ⎡ ⎤⎣ ⎦ . 

So to model the complex joint relationship of the process and the data we calculate the 
product of the data model and the prior process model. We will employ this factorisation 
technique below. 

2.2 Hierarchical Models 
We now take a step closer to practical application. We assume that there are statistical 
parameters  (typically error variance, but possibly parameters accounting for factors 
other than variability) and physical parameters 

Θ
η . We may now apply Bayes’ theorem to 

model the joint uncertainty of all the quantities involved, making some sensible 
modelling assumptions along the way, which should be tested in any particular 
application. 

Thus, 

[ ] [ ]
[ ]

, , , , , , ,

, , , , .

P D D P P

D P P

η η η

η η η

Θ = ⎡ Θ ⎤ Θ⎣ ⎦
= ⎡ Θ ⎤ ⎡ Θ ⎤ Θ⎣ ⎦ ⎣ ⎦

 

The first term is the data model, whilst the second term is a prior physical process model 
incorporating uncertainty. The last term is a prior model for the statistical and physical 
parameters, called the prior parameters model. We now consider each of these model 
components in turn. 

Data Model: 

Conditional on the process P and the statistical parameters Θ  it is reasonable to assume 
that there is no further information in the physical parameters. We may therefore simplify 
this term to ,D P⎡ Θ⎣ ⎤⎦ . The most basic data model is a measurement error model, and 
would take the form 

.D P N= +  

Here N represents error, and would be a random variable with mean 0 and variance Θ. 

Prior Process Model: 

Conditional on the physical parameters, η , it is reasonable to assume that there is no 
further information on the process P contained in the statistical parameters. We may 
therefore simplify this term to P η⎡ ⎤⎣ ⎦ . 

Prior Parameters Model: 

Applying Bayes’ theorem we find [ ] [ ], η η ηΘ = ⎡Θ ⎤⎣ ⎦ . It seems reasonable to assume that 

the physical and statistical parameters are a priori independent, so that [ ]η⎡Θ ⎤ = Θ⎣ ⎦ . 
Note that this does not mean that Θ  and η  are independent conditional on the observed 
data (a posteriori, that is). With this assumption the prior parameters model simplifies to 
[ ] [ ][ ], η ηΘ = Θ . 
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Thus the joint probability model becomes 

 [ ] [ ][ ], , , , .P D D P Pη η ηΘ = ⎡ Θ⎤ ⎡ ⎤ Θ⎣ ⎦ ⎣ ⎦  (2) 

This is a general hierarchical model for a physical process subject to uncertainty. Whilst a 
model for the collection , , ,P D ηΘ  is necessarily very complex, equation (2) 
demonstrates that we can break it into simpler, conditional models that are simply 
multiplied together. This is the essence of hierarchical thinking 

3 An Example 
We examine here a simple example to expose the details of how Bayesian methods work 
in terms of developing models. The focus in this example will be on the data model and 
prior parameters model. Some moderately sophisticated examples from the recent 
literature are then described, with a greater focus on the prior process model. 

Consider the motion of a body of mass m down a slope of angle θ, with a friction 
coefficient of µ. Our objective is to infer information about the friction coefficient using 
observations and physical reasoning. We may represent our physical knowledge via the 
following force diagram, where R represents resistive forces and g acceleration due to 
gravity: 

R

b

a

c

d

 
Figure 1 Force diagram for a body moving down a slope, starting at rest. 

 

From the force diagram the resultant force down the slope is given by c-a, which follows 
readily as sin cos .mg Rθ θ−  If we define ( )X t  to be the body’s distance at time t down 

θ mg
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the slope from the starting point, and define the boundary conditions  and 

:  
( ) 0X t =

( ) 0X t =�

( )
( ) ( ) 2

1 2

sin cos

sin cos 2.

X t mg R

X t c c t mg R t

θ θ

θ θ

= −

⇒ = + + −

��
 

Applying the boundary conditions we find 

( ) ( ) 2sin cos 2X t mg R tθ θ= − . 

The objective of our study is to model the resistive forces R. We assume here 
that ,R mg∝ with constant of proportionality given by the friction coefficient µ applicable 
for the surfaces in contact. Thus, 

( ) ( ) 2sin cos 2X t mg tθ µ θ= − . 

At fixed times we collect measurements 1, , nt … t ( ) ( )1 , , nx t x t… on the distance down the 
track by some means. These are however subject to error- we assume that this error is not 
biased, and so is equally likely to be positive or negative. We may model the 
observations as a normal distribution having mean ( ) 2sin cos 2mg tθ µ θ−  and some 

error variance 2σ , which we denote as ( ) ( )( )2~ sin cos 2,X t N mg t 2θ µ θ σ− . The 

better the measurement method, the smaller the value of 2σ . A more realistic error model 
is for a constant coefficient of variation, so that larger absolute errors are observed for 
larger observations. However, this simple case allows straightforward explicit 
calculations. 

We may now formulate a hierarchical model. 

Data Model 

This is the joint probability of the observed data, which under reasonable assumptions is 
just the product of the individual observations’ probability distributions: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
2

2

22 2 21
1 22

1

22 21
22

1

1, , , 2 exp sin cos
2

12 exp sin cos .
2

n

n

n i
i

n

i i
i

X t X t X t mg t

X t mg t

σ µ πσ θ µ θ
σ

πσ θ µ θ
σ

−

=

−

=

i
⎧ ⎫⎡ ⎤ ⎡ ⎤= − − −⎨ ⎬⎣ ⎦⎣ ⎦ ⎩ ⎭

⎧ ⎫⎡ ⎤= − − −⎨ ⎬⎣ ⎦⎩ ⎭

∏

∑

…
 

Prior Process Model 

We are free now to describe any information we have on the process, and we choose to 
quantify our knowledge of the friction coefficient µ. In this case we assume that we can 
specify a mean value (η) and a variance ( 2τ ), and it seems once again not unreasonable 
to assume a normal distribution. However, given that we expect movement down the 
slope (else why do the experiment), we know that the resultant force is positive: 
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( )sin cos 0
tan .

mg θ µ θ
µ θ

− >

⇒ <
 

The variance parameter in cases like this will normally be a consequence of expert 
assessment of a reasonable range for the parameter of interest. Thus, 

( )2~ , , tanN .µ η η τ µ⎡ ⎤ <⎣ ⎦ θ  

Clearly we could be more sophisticated, although there is a strong physical inspiration in 
the data model. 

Prior Parameters Model 

We now need to specify our prior uncertainty in all the parameters we have used-η, 2σ  
and 2 ,τ denoted by 2 2, ,η σ τ⎡⎣ ⎤⎦ . It seems reasonable to assume that these quantities are a 

priori independent, so that [ ]2 2 2 2, ,η σ τ η σ τ⎡ ⎤ ⎡ ⎤ ⎡=⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦ . It is common to use previous data 
to define prior distributions for variance parameters, but it is often the case that no 
previous data are available. In such cases it is common to assign so-called vague priors, 
which in this case (for technical reasons) would be 

[ ] 2 2 2tan 1, 1 , 1 .2η θ σ σ τ⎡ ⎤ ⎡ ⎤< ∝ ∝ ∝⎣ ⎦ ⎣ ⎦ τ  

Where more information is available it is normally found that positively skewed 
distributions, such as the gamma or inverse chi-squared distributions are appropriate prior 
models. 

  
Appealing to equations (1) and (2), the posterior probability distribution for all the 
parameters is proportional to the product of the data model, the prior process model and 
the prior parameters model: 

 ( ) ( ) ( ) ( )2 2 2 2 2 2
1 1, , , , , , , , , , , .n nX t X t X t X tµ η τ σ σ µ µ η τ η τ σ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤∝ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦… …  (3) 

3.1 Numerical Example 
To find the distribution for µ  from (3) we must in general integrate out the unwanted 
parameters 2,η τ  and 2.σ  In practice we rarely do this as the multi-dimensional integral 
involved is only analytically tractable in rare cases. We would also have to calculate the 
constant of proportionality implied by (3). There are in fact methods for generating a 
sample from the probability distribution for µ, and the most popular of these is known as 
Markov chain Monte Carlo (MCMC). Such methods are beyond the scope of the present 
report; suffice it to say that this is possible, and the algorithm was in fact first developed 
in the physics literature (Metropolis et al. (1953)). It was subsequently generalised in the 
statistics literature by Hastings (1970). 

We will consider a simpler case here for illustration, assuming that the measurement error 
is known to be  from past experiments. We assume further that good prior ( 22 10mmσ = )
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information on µ  is available, which is captured as ( )2~ 0.1, 0.1 tanNµ µ θ< , 

eliminating the parameter 2τ  in effect. The posterior distribution then is 

 
( ) ( ) ( ) ( )

( )

22
1 2

1

2
2

1, , exp sin cos
2.
1exp 0.1 ,

2.

n

n i
i

X t X t X t mg tµ θ
σ

µ
τ

=
iµ θ⎧ ⎫⎡ ⎤ ⎡ ⎤∝ − − − ×⎨ ⎬⎣ ⎦⎣ ⎦ ⎩ ⎭

⎧ ⎫− −⎨ ⎬
⎩ ⎭

∑…
 (4) 

retaining only terms in µ. 

It can be shown that2

( ) ( )
2 2 2 2

1 2 2 2 2

0.5
, , ~ ,i

n
i i

b
X t X t N

a a
σ η τ σ τµ
σ τ σ τ

⎛ ⎞−
⎜ ⎟⎜ ⎟+ +⎝ ⎠

∑
∑ ∑

… , 

where 2 2 4 2 2 2 2 41 1
4 4cos and cos sin 2 .i i i i i ia m g t b mgX t m g tθ θ θ= = −  

We have simulated a case for a 45° slope with friction coefficient 0.09, and the results are 
shown in Figure 2 below. Because of the size of the slope there is insignificant prior 
probability greater than , so we can neglect the upper bound on µ. The posterior 
mean in this case turns out to be 0.076 with standard deviation 0.0178, so a substantial 
decrease compared to the prior standard deviation. The Bayesian learning process is 
depicted in Figure 3 where we show the prior and posterior distributions for the friction 
coefficient. It is evident that the posterior is more concentrated than the prior, and shifted 
a little to the left, in keeping with the observations. As more data are collected the 
posterior will tend to be less influenced by the prior. 

tan 45 1=D

As implied above, many improvements could be made to this example, which is 
simplified to illustrate the ideas involved. We could employ a positive-valued or 
otherwise truncated prior distribution for µ to avoid negative values, and more realistic 
measurement error models are possible, as noted above. These cases are no more 
complex from a statistical perspective, but we require different approaches to quantifying 
the posterior distribution. Rather than dwell on technical issues, it is perhaps more 
beneficial at this stage to consider some more substantive, and necessarily complex, 
applications studied in the literature. 

3.2 An Extension 
It could be argued that the composition of the resistive forces R is, in practice, subject to 
substantial uncertainty (Frank Dehoog, Pers. Comm.). In such cases we might be able to 
suggest alternative compositions for R, to be tested against available data. Alternatively, 
we might simply develop a statistical model for the resistive forces that is inspired by our 
physical understanding. 
                                                 
2 This is done by forming a quadratic in  µ  and then ‘completing the square’ to form the kernel of a normal 
probability density. By the uniqueness property of density functions, we can identify the distribution. 
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First, the alternative compositions approach. There are a number of ways that this might 
be done. Suppose that 

( )
1

r

i i i
i

R Rδ ψ
=

=∑ , 

where we assume that there are r different compositions, the presence or absence of the 
ith  indicated by the indicator variable 

1, present
0, absent.iδ
⎧

= ⎨
⎩
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Figure 2 Simulated points and expected distance (solid curve). 

 

The parameters for the ith composition are denoted by .iψ  In the hierarchical approach we 
would define a prior [ ],∆ Ψ  for these indicator variables and parameters, and the prior 
could incorporate sophisticated information such as not all compositions are mutually 
exclusive. The posterior for  would give an indication of support for the various 
resistive force compositions. 

∆
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Now for the statistical approach; the possibilities really are endless, so let’s examine an 
approach to modelling nonlinear effects. If we write u mg=  then in the example we used 
( ) .R u u=  An obvious extension is ( ) 2

0 1 2R u u uβ β β= + + , or perhaps some kind of 
spline. Bayesian methods could then be used to select an optimal model, in light of the 
available data. 

It seems entirely feasible to mix these approaches to see if there are any interesting 
patterns over and above our physical formulation of the physical problem. That is, 

( ) 2;iR R u uψ β= + , 

say, to look for an additional nonlinear effect. Clearly such a modelling exercise would 
have to be guided by physical insight to avoid modelling noise, in effect. 
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Figure 3 Prior (solid line) and posterior (dashed line) distributions for the friction 

coefficient. 

 

3.3 Examples From the Literature 
Having looked in some detail at the simple example above, we now return in a little more 
detail to the geophysical applications noted in the introduction. The first application to 
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receive attention in the climate literature was the prediction of Pacific Ocean sea-surface 
temperatures (SST) using hierarchical methods (Berliner et al. (2000)). This work used a 
qualitative description of SST dynamics to build a process model that was essentially 
statistical. The model incorporated regime-dependent behaviour of the El Niño-Southern 
Oscillation phenomenon using a threshold model for the southern oscillation index (SOI). 
Whilst the modelling was physically-inspired, there was no explicit physical modelling. 
The results obtained are impressive, nonetheless3. 

A more explicitly physical process model of air-sea interaction was explored by Berliner 
et al. (2003). The model was developed as the product of an atmosphere-given-ocean 
model and an atmospheric model. The ocean component used a ‘basic quasi-geostrophic’ 
model of the space-time evolution of the gridded ocean streamfunction values. To 
implement the model the spatial derivatives required were approximated empirically via 
finite differences. A wind stress term is introduced into the evolution equation for the 
streamfunction, linking the ocean and atmosphere components. 

A feature of the modelling is that the evolution of interior points in space is conditional 
on the boundary of the modelled space, which is very easy to handle in a Bayesian 
framework. The method for handling boundary values and uncertainty in boundary 
conditions is based on Wikle et al. (2003). Boundary condition uncertainty is a common 
feature of geophysical applications, and this paper shows how to integrate this with other 
sources of uncertainty via a hierarchical model. A statistically technical feature of this 
paper is the development of a model calibration algorithm suitable for a coupled physical 
model. This is complicated by conventional statistical standards, but is not 
computationally intensive by the standards of a physical coupled ocean-atmosphere 
model. 

The scope for hierarchical approaches in environmental modelling is clearly very large. A 
very readable introduction to the field is provided by Wikle (2003). The focus of this 
paper is on general methods of modelling processes that evolve in space and time, using 
hierarchical methods to capture the complexity. An introductory paper targeted explicitly 
for a geophysics audience is Berliner (2003). In this latter paper the ideas are introduced 
through a study of the kinematics of fluids. The paper then considers applications in 
climate modelling, fingerprinting of climate change and near-surface ocean winds. 

 

4 A Suggested Framework for Climate Forecasting 
We are typically interested in learning about and forecasting climate phenomena using 
observed data and physical knowledge. Suppose we denote by Y the climate output of 
interest, with observations on Y denoted DY. Possibilities for Y include rainfall, 
temperature etc. We assume that the climate output is influenced by a collection of 
physical processes or climate inputs, say, { }: 1, ,i ,Z Z i p= = …  with data on some or all 
of these processes denoted by DZ. We denote by YΘ  and ZΘ  parameters associated with 

                                                 
3 See http://www.stat.ohio-state.edu/~sses/collab_enso.php for the latest predictions. 
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the measurement processes- typically measurement error. We further denote by Zη  and 

Yη  parameters associated with the physical process models for Z and Y respectively. 

In summary, we have defined the following quantities: 

 

Table 1 Nomenclature for a climate forecasting framework. 

Processes Data Parameters 

Y- Climate output DY YΘ - Parameters of measurement model 

Yη - Parameters of physical process 
model for climate output. 

Z- Physical processes 
influencing Y 

DZ ZΘ - Parameters of measurement model 

Zη - Parameters of physical process 
model for climate inputs. 

 

We seek a joint probability model for all the quantities shown in Table 1, and applying 
hierarchical thinking: 

[ ] [ ]

[ ]

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , ,

, , , .

Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z

Y Z Y Z Y Z Y Z Y Z

Y Z Y Z

D D Y Z D D Y Z Y Z

D D Y Z Y Z

η η η η η η

η η η η

η η

Θ Θ = ⎡ Θ Θ ⎤ Θ Θ⎣ ⎦
= ⎡ Θ Θ ⎤ ⎡ Θ Θ ⎤×⎣ ⎦ ⎣

Θ Θ
⎦  

Conditional on Z there is no further information in the physical process parameters, so the 
first term on the right hand side simplifies to , , , ,Y Z Y ZD D Y Z⎡ Θ Θ ⎤⎣ ⎦ . Conditional on the 
physical parameters, the statistical parameters yield no further information on the Y and Z 
processes, so the second term simplifies to , ,Y ZY Z η η⎡ ⎤⎣ ⎦ . This yields a factorisation of 
the joint probability model as 

[ ] [ ], , , , , , , , , , , , , , ,Y Z Y Z Z Y Z Y Z Y Z Y Z Y ZD D Y Z D D Y Z Y Z ,η η η η ηΘ Θ = ⎡ Θ Θ ⎤ ⎡ ⎤ Θ Θ⎣ ⎦ ⎣ ⎦  

the product of a data model, a process model and a prior parameter model. We consider 
these components in more detail below. 

4.1 The Data Model 
The data model is 

, , , ,Y Z Y ZD D Y Z⎡ Θ Θ ⎤⎣ ⎦ . 

A reasonable assumption at this stage is that each data set is conditionally independent, 
given their respective statistical and process parameters. Applying Bayes’ theorem with 
this assumption we find: 
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, , , , , ,Y Z Y Z Y Y Z ZD D Y Z D Y D Z⎡ Θ Θ ⎤ = ⎡ Θ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣ Θ ⎤⎦ . 

This does not mean that the data sets are independent in an absolute sense- they are inter-
connected through the process models. 

4.2 The Prior Process Model 
The process model is 

, ,Y ZY Z η η⎡ ⎤⎣ ⎦ . 

Given the climate input-output formulation introduced earlier, it makes sense to factorise 
this as 

, , ,Y Z Y ZY Z Y Z Zη η η η⎡ ⎤ = ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣ .⎤⎦  

The first component is a process model for how the climate inputs Z influence the climate 
output Y. We might, for example, capture some physical description of the rainfall 
process here. Even if this only crude, it will serve to constrain the data model to be 
physically reasonable. The second component is a pure climate-input process model, 
perhaps capturing broad scale ocean and atmosphere processes. 

It may be that the climate-inputs process model partitions naturally into ocean and 
atmosphere components Zo and Za say, then 

0

, ,

, .
Z o a o a

a o a o

Z Z Z

Z Z Z

η η η

η η

⎡ ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦
= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

The first component is an atmospheric model conditional on ocean state, whilst the 
second component is an (unconditional) ocean model. This factorisation was employed 
by Berliner et al. (2003) in their application. It is evident that significant statistical-
geophysical collaboration is required to develop a model of this sort. 

4.3 The Prior Parameters Model 
The prior parameters model is 

[ ], , ,Y Z Y Zη ηΘ Θ . 

Generally speaking we will assume a priori independence of the parameters, and just 
factor this into a product of individual prior distributions. Bayes’ theorem can be used to 
develop more complex prior parameter models if needed. 

5 Fitting Physical-Statistical Models 
If we have just one physical process P, then in keeping with our earlier notation the 
posterior distribution of the physical process and all parameters given the data is 

 [ ], , , ,P D D P Pη⎡ Θ ⎤ ∝ ⎡ Θ⎤ ⎡ Θ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ η Θ . (5) 
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In order to summarise properties, such as posterior means and standard errors, we must 
be able to carry-out what are likely to be complex integrations. It is rarely possible to do 
this analytically, so it has become common practice to use simulation techniques. The 
most common method for developing suitable algorithms is known as Markov chain 
Monte Carlo (MCMC- see section 3.1).  

In general MCMC will require us to generate many random realisations from the physical 
model. This will work well if this model is relatively simple, but it is likely to be 
inherently nonlinear and complex in the applications of interest to us. This means that 
MCMC is likely to be computationally inefficient and time-consuming. 

An alternative approach is based on the idea of importance sampling-resampling (IS-R). 
In essence, IS-R is a method of generating a sample from a desired (typically complex) 
distribution given a sample from some other (simpler) distribution. The algorithm can be 
written as: 

1. Generate a sample { }ix  of M observations from an easy to simulate distribution g. 

2. Calculate ( ) ( ) 1, ,i i iw f x g x i M= = … , where f is the target distribution, known 
up to a constant of proportionality. 

3. Calculate .i iq w w= ∑ j  

4. Repeat from 1 to N 

a. Sample with replacement one of the { }ix at random. 

b. Accept as a sample from the target distribution g with probability qi. 

5. End 

 

In the physical-statistical model (5) we can apply this algorithm as follows: 

1. Generate a sample from the prior parameters model. 

2. Using this sample, generate an ensemble of physical process realisations. 

3. Use the data model in IS-R to generate a sample approximately from the target 
posterior distribution using the ensemble simulated from the prior process model. 

 

This is essentially the model-fitting approach used by Berliner et al. (2003), with the 
complication of two interacting processes (ocean and atmosphere). An ensemble from the 
(unconditional) atmospheric model was generated first using MCMC, then realisations of 
ocean streamfunction were generated for each member of this ensemble. This gives a 
combined ensemble for the physical and prior components. Importance sampling using 
the ocean data model was then used to summarise the posterior quantities of interest. The 
algorithm is termed importance sampling Monte Carlo- Markov chain Monte Carlo   
(ISMC-MCMC) by the authors. Further technical details are given in the appendix.  
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A weakness of importance sampling in general is that if the information in the data is 
inconsistent with the prior specifications then the algorithm can be very inefficient The 
ISMC-MCMC algorithm appears to be very promising however because the MCMC-
derived sample that provides the input stream for importance sampling is guided in part 
by the data. We would therefore expect a corresponding gain in efficiency compared to a 
sample drawn from a prior distribution alone. 

 

6 Discussion and Conclusions 
We have seen that Bayesian hierarchical methods can be used to integrate physical and 
statistical models in one framework. This enables us to directly produce probability 
forecasts of system evolution, bringing together all sources of uncertainty. Because the 
statistical and physical components are inter-connected they ‘borrow strength’ from each 
other. This also means that total uncertainty is not simply the sum of all uncertainties in 
the system. 

We explored a very simple example of friction on a slope to illustrate the ideas. In this 
case physical modelling came mostly through the data model, conditional on the process. 
The prior process model was very simple. We then examined some examples from the 
literature where the prior process model is much more complex. Having explored these 
ideas we have suggested an outline framework for climate forecasting. 

Fitting physical-statistical models using available data is a difficult problem. At this point 
it seems that a hybrid approach using importance sampling is the most promising. It 
seems unlikely that conventional approaches based on Markov chain Monte Carlo 
(MCMC) alone will be more efficient, unless some special insights can be used in 
constructing the proposal distribution that drives this approach. Determining appropriate 
sample sizes for simulation procedures is an open question at this stage.  

There is a growing literature on adaptive MCMC that is still in its infancy, and could well 
provide a way forward. One possibility is the use of the Hastings Coupling method. If 
efficient MCMC approaches can be developed then the question of convergence arises 
immediately, which is an open question of some complexity.  

A major challenge of modelling using hierarchical methods is that a truly collaborative 
effort between statisticians and geophysicists is required to develop models in this way. 
It’s a new way of building models. 
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Appendix: Importance Sampling for Fitting Physical-
Statistical Models 
Using our general framework the posterior distribution typically of interest is 

[ ], , , ,P D D P Pη η⎡ Θ ⎤ ∝ ⎡ Θ⎤ ⎡ ⎤ Θ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ η . 

In geophysical applications the prior process model P η⎡ ⎤⎣ ⎦  is likely to be nonlinear and 

complicated, at least in terms of the physical parameters η. This means that conventional 
MCMC algorithms are likely to be inefficient4. The importance sampling algorithm of 
Berliner et al. (2003) is as follows: 

1. Generate a sample { },i iηΘ  from the prior parameters distribution. 

2. Generate an ensemble { }iP  from the prior physical model using the { }.iη  

3. Resample the { }, ,i i iP ηΘ with the acceptance probability 

                                                 
4 Gibbs sampling would appear to be ruled out in all but trivial cases on the grounds that full conditionals 
are not accessible. A Metropolis-Hastings algorithm would require very careful tuning to achieve a 
reasonable acceptance rate. It seems likely that at least some of the physical parameters will be correlated, 
and reparameterisation is unlikely to be an option. 
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The resulting sample tends in distribution to the posterior. 

[] 

An immediate issue that arises is that this algorithm is heavily dependent on how ‘close’ 
the prior is to the posterior. If we were to replace the sample from the prior distribution 
with a more general distribution ( ),g η ,Θ  say, then the acceptance probability becomes 

[ ] ( )
( )

, , ,
.

, ,
i i i i i i i i

i
j j j j j j j j

j

D P P g
q

D P P g

η η η

η η η

⎡ Θ ⎤ ⎡ ⎤ Θ Θ⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤ ⎡ ⎤Θ Θ⎣ ⎦⎣ ⎦ ⎣ ⎦∑ ,Θ

 

We can make this algorithm more efficient by matching g to the posterior as best we are 
able. Berliner et al. (2003) allude to ‘sequential’ application of MCMC in appendix A3 to 
their paper. One way is to tune the density function g using an initial run of the algorithm, 
using the basic acceptance probability and sampling from the prior parameters model. For 
example, we could use a multivariate normal form for g, with transformed parameters to 
take account of finite ranges or skewness for example. This seems a promising approach 
to make the importance sampling approach adaptive, and could be made essentially 
automatic. An alternative path to explore is the use of density estimation techniques. 

Berliner et al.’s Model: 
This model is for air-sea interaction, with components U, V for wind direction and ocean 
streamfunction Ψ. The posterior of interest in their notation is 

, , , , , , , , , , , ,

, , , ,

w w w w w

w w w

U V D D D D U V U V

U V

ψ ψ ψ ψ ψ ψ

ψ ψ

η η η

η η η

⎡ ⎤ ⎡ ⎤Ψ Θ Θ ∝ Ψ Θ ⎡ Θ ⎤ Ψ ×⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ Θ Θ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎣ ⎦ , 

albeit expressed a little differently. Applying Bayes’ theorem to the second line yields 
their equation (B2): 

, , , , , , , , , , , ,

, , , , .

w w w w w

w w w

U V D D D D U V U V

U V D

ψ ψ ψ ψ ψ ψ

ψ ψ

η η η

η η

⎡ ⎤ ⎡ ⎤Ψ Θ Θ ∝ Ψ Θ ⎡ Θ ⎤ Ψ ×⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤Θ ⎡ Θ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤⎣ ⎦  

Their algorithm then proceeds as follows: 

1. use MCMC to generate a sample from , , ,w w wU V Dη⎡ Θ ⎤⎣ ⎦ . 

2. Simulate a matching sample from ,ψ ψη⎡ ⎤Θ⎣ ⎦ . 

3. Generate an ensemble { }iΨ  using the sampled values. 

4. Resample these simulated samples using the acceptance probability 
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[] 

As before, we could generalise to a case where we sample from some distribution other 
than the prior parameters model at step 2. 
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